

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/express-messages/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/express-messages/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Express Messages

The express-messages module provides flash notification rendering. To use simply assign it to a dynamic helper:

app.dynamicHelpers({ messages: require('express-messages') });

Installation

$ npm instal express-messages

Usage

Then in a view you may output the notifications:

<%- messages() %>

Which outputs HTML as shown below:

<div id="messages">
 <ul class="info">
 Email queued
 Email sent

 <ul class="error">
 Email delivery failed

</div>

Running Tests

First make sure you have the submodules:

$ git submodule update --init

Then run the tests:

$ make test

License

(The MIT License)

Copyright (c) 2010 TJ Holowaychuk <

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

0.0.2 / 2011-04-25

	Fixed clobbering of length var [reported by MIB]

0.0.1 / 2010-09-06

	Initial release

Expresso

TDD framework for nodejs [http://nodejs.org].

Features

	light-weight

	intuitive async support

	intuitive test runner executable

	test coverage support and reporting

	uses the assert module

	assert.eql() alias of assert.deepEqual()

	assert.response() http response utility

	assert.includes()

	assert.type()

	assert.isNull()

	assert.isUndefined()

	assert.isNotNull()

	assert.isDefined()

	assert.match()

	assert.length()

Installation

To install both expresso and node-jscoverage run:

$ make install

To install expresso alone (no build required) run:

$ make install-expresso

Install via npm:

$ npm install expresso

0.6.2 / 2010-08-03

	Added assert.type()

	Renamed assert.isNotUndefined() to assert.isDefined()

	Fixed assert.includes() param ordering

0.6.0 / 2010-07-31

	Added docs/api.html

	Added -w, –watch

	Added Array support to assert.includes()

	Added; outputting exceptions immediately. Closes #19

	Fixed assert.includes() param ordering

	Fixed assert.length() param ordering

	Fixed jscoverage links

0.5.0 / 2010-07-16

	Added support for async exports

	Added timeout support to assert.response(). Closes #3

	Added 4th arg callback support to assert.response()

	Added assert.length()

	Added assert.match()

	Added assert.isUndefined()

	Added assert.isNull()

	Added assert.includes()

	Added growlnotify support via -g, –growl

	Added -o, –only TESTS. Ex: –only “test foo()” –only “test foo(), test bar()”

	Removed profanity

0.4.0 / 2010-07-09

	Added reporting source coverage (respects –boring for color haters)

	Added callback to assert.response(). Closes #12

	Fixed; putting exceptions to stderr. Closes #13

0.3.1 / 2010-06-28

	Faster assert.response()

0.3.0 / 2010-06-28

	Added -p, –port NUM flags

	Added assert.response(). Closes #11

0.2.1 / 2010-06-25

	Fixed issue with reporting object assertions

0.2.0 / 2010-06-21

	Added make uninstall

	Added better readdir() failure message

	Fixed make install for kiwi

0.1.0 / 2010-06-15

	Added better usage docs via –help

	Added better conditional color support

	Added pre exit assertion support

0.0.3 / 2010-06-02

	Added more room for filenames in test coverage

	Added boring output support via –boring (suppress colored output)

	Fixed async failure exit status

0.0.2 / 2010-05-30

	Fixed exit status for CI support

0.0.1 / 2010-05-30

	Initial release

node-jscoverage

JScoverage [http://siliconforks.com/jscoverage/] for node.

Installation

$./configure && make && make install

 Expresso [http://github.com/visionmedia/expresso] is a JavaScript TDD [http://en.wikipedia.org/wiki/Test-driven_development] framework written for nodejs [http://nodejs.org]. Expresso is extremely fast, and is packed with features such as additional assertion methods, code coverage reporting, CI support, and more.

Features

	light-weight

	intuitive async support

	intuitive test runner executable

	test coverage support and reporting via node-jscoverage [http://github.com/visionmedia/node-jscoverage]

	uses and extends the core assert module

	assert.eql() alias of assert.deepEqual()

	assert.response() http response utility

	assert.includes()

	assert.isNull()

	assert.isUndefined()

	assert.isNotNull()

	assert.isDefined()

	assert.match()

	assert.length()

Installation

To install both expresso and node-jscoverage run
the command below, which will first compile node-jscoverage:

$ make install

To install expresso alone without coverage reporting run:

$ make install-expresso

Install via npm:

$ npm install expresso

Examples

To define tests we simply export several functions:

exports['test String#length'] = function(assert){
 assert.equal(6, 'foobar'.length);
};

Alternatively for large numbers of tests you may want to
export your own object containing the tests, however this
is essentially the as above:

module.exports = {
 'test String#length': function(assert){
 assert.equal(6, 'foobar'.length);
 }
};

If you prefer not to use quoted keys:

exports.testsStringLength = function(assert){
 assert.equal(6, 'foobar'.length);
};

The second argument passed to each callback is beforeExit,
which is typically used to assert that callbacks have been
invoked.

exports.testAsync = function(assert, beforeExit){
 var n = 0;
 setTimeout(function(){
 ++n;
 assert.ok(true);
 }, 200);
 setTimeout(function(){
 ++n;
 assert.ok(true);
 }, 200);
 beforeExit(function(){
 assert.equal(2, n, 'Ensure both timeouts are called');
 });
};

Assert Utilities

assert.isNull(val[, msg])

Asserts that the given val is null.

assert.isNull(null);

assert.isNotNull(val[, msg])

Asserts that the given val is not null.

assert.isNotNull(undefined);
assert.isNotNull(false);

assert.isUndefined(val[, msg])

Asserts that the given val is undefined.

assert.isUndefined(undefined);

assert.isDefined(val[, msg])

Asserts that the given val is not undefined.

assert.isDefined(null);
assert.isDefined(false);

assert.match(str, regexp[, msg])

Asserts that the given str matches regexp.

assert.match('foobar', /^foo(bar)?/);
assert.match('foo', /^foo(bar)?/);

assert.length(val, n[, msg])

Assert that the given val has a length of n.

assert.length([1,2,3], 3);
assert.length('foo', 3);

assert.type(obj, type[, msg])

Assert that the given obj is typeof type.

assert.type(3, 'number');

assert.eql(a, b[, msg])

Assert that object b is equal to object a. This is an
alias for the core assert.deepEqual() method which does complex
comparisons, opposed to assert.equal() which uses ==.

assert.eql('foo', 'foo');
assert.eql([1,2], [1,2]);
assert.eql({ foo: 'bar' }, { foo: 'bar' });

assert.includes(obj, val[, msg])

Assert that obj is within val. This method supports _Array_s
and _Strings_s.

assert.includes([1,2,3], 3);
assert.includes('foobar', 'foo');
assert.includes('foobar', 'bar');

assert.response(server, req, res|fn[, msg|fn])

Performs assertions on the given server, which should not call
listen(), as this is handled internally by expresso and the server
is killed after all responses have completed. This method works with
any http.Server instance, so Connect and Express servers will work
as well.

The req object may contain:

	url request url

	timeout timeout in milliseconds

	method HTTP method

	data request body

	headers headers object

The res object may be a callback function which
receives the response for assertions, or an object
which is then used to perform several assertions
on the response with the following properties:

	body assert response body

	status assert response status code

	header assert that all given headers match (unspecified are ignored)

When providing res you may then also pass a callback function
as the fourth argument for additional assertions.

Below are some examples:

assert.response(server, {
 url: '/', timeout: 500
}, {
 body: 'foobar'
});

assert.response(server, {
 url: '/',
 method: 'GET'
},{
 body: '{"name":"tj"}',
 status: 200,
 headers: {
 'Content-Type': 'application/json; charset=utf8',
 'X-Foo': 'bar'
 }
});

assert.response(server, {
 url: '/foo',
 method: 'POST',
 data: 'bar baz'
},{
 body: '/foo bar baz',
 status: 200
}, 'Test POST');

assert.response(server, {
 url: '/foo',
 method: 'POST',
 data: 'bar baz'
},{
 body: '/foo bar baz',
 status: 200
}, function(res){
 // All done, do some more tests if needed
});

assert.response(server, {
 url: '/'
}, function(res){
 assert.ok(res.body.indexOf('tj') >= 0, 'Test assert.response() callback');
});

expresso(1)

To run a single test suite (file) run:

$ expresso test/a.test.js

To run several suites we may simply append another:

$ expresso test/a.test.js test/b.test.js

We can also pass a whitelist of tests to run within all suites:

$ expresso --only "foo()" --only "bar()"

Or several with one call:

$ expresso --only "foo(), bar()"

Globbing is of course possible as well:

$ expresso test/*

When expresso is called without any files, _test/*_ is the default,
so the following is equivalent to the command above:

$ expresso

If you wish to unshift a path to require.paths before
running tests, you may use the -I or --include flag.

$ expresso --include lib test/*

The previous example is typically what I would recommend, since expresso
supports test coverage via node-jscoverage [http://github.com/visionmedia/node-jscoverage] (bundled with expresso),
so you will need to expose an instrumented version of you library.

To instrument your library, simply run node-jscoverage [http://github.com/visionmedia/node-jscoverage],
passing the src and dest directories:

$ node-jscoverage lib lib-cov

Now we can run our tests again, using the lib-cov directory that has been
instrumented with coverage statements:

$ expresso -I lib-cov test/*

The output will look similar to below, depending on your test coverage of course :)

[image: node coverage]

To make this process easier expresso has the -c or –cov which essentially
does the same as the two commands above. The following two commands will
run the same tests, however one will auto-instrument, and unshift lib-cov,
and the other will run tests normally:

$ expresso -I lib test/*
$ expresso -I lib --cov test/*

Currently coverage is bound to the lib directory, however in the
future --cov will most likely accept a path.

Async Exports

Sometimes it is useful to postpone running of tests until a callback or event has fired, currently the exports.foo = function(){}; syntax is supported for this:

setTimeout(function(){
 exports['test async exports'] = function(assert){
 assert.ok('wahoo');
 };
}, 100);

EJS

Embedded JavaScript templates.

Installation

$ npm install ejs

Features

	Complies with the Express [http://expressjs.com] view system

	Static caching of intermediate JavaScript

	Unbuffered code for conditionals etc <% code %>

	Escapes html by default with <%= code %>

	Unescaped buffering with <%- code %>

	Supports tag customization

	Filter support for designer-friendly templates

Example

<% if (user) { %>
 <h2><%= user.name %></h2>
<% } %>

Usage

ejs.compile(str, options);
// => Function

ejs.render(str, options);
// => str

Options

	locals Local variables object

	cache Compiled functions are cached, requires filename

	filename Used by cache to key caches

	context|scope Function execution context

	debug Output generated function body

	open Open tag, defaulting to “<%”

	close Closing tag, defaulting to “%>”

Custom Tags

Custom tags can also be applied globally:

var ejs = require('ejs');
ejs.open = '{{';
ejs.close = '}}';

Which would make the following a valid template:

<h1>{{= title }}</h1>

Filters

EJS conditionally supports the concept of “filters”. A “filter chain”
is a designer friendly api for manipulating data, without writing JavaScript.

Filters can be applied by supplying the : modifier, so for example if we wish to take the array [{ name: 'tj' }, { name: 'mape' }, { name: 'guillermo' }] and output a list of names we can do this simply with filters:

Template:

<p><%=: users | map:'name' | join %></p>

Output:

<p>Tj, Mape, Guillermo</p>

Render call:

ejs.render(str, {
 locals: {
 users: [
 { name: 'tj' },
 { name: 'mape' },
 { name: 'guillermo' }
]
 }
});

Or perhaps capitalize the first user’s name for display:

<p><%=: users | first | capitalize %></p>

Filter List

Currently these filters are available:

	first

	last

	capitalize

	downcase

	upcase

	sort

	sort_by:’prop’

	size

	length

	plus:n

	minus:n

	times:n

	divided_by:n

	join:’val’

	truncate:n

	truncate_words:n

	replace:pattern,substitution

	prepend:val

	append:val

	map:’prop’

	reverse

	get:’prop’

License

(The MIT License)

Copyright (c) 2009-2010 TJ Holowaychuk <

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

0.2.0 / 2010-08-05

	Added support for global tag config

	Added custom tag support. Closes #5

	Fixed whitespace bug. Closes #4

0.1.0 / 2010-08-04

	Faster implementation [ashleydev]

0.0.4 / 2010-08-02

	Fixed single quotes for content outside of template tags. [aniero]

	Changed; exports.compile() now expects only “locals”

0.0.3 / 2010-07-15

	Fixed single quotes

0.0.2 / 2010-07-09

	Fixed newline preservation

0.0.1 / 2010-07-09

	Initial release

Expresso

TDD framework for nodejs [http://nodejs.org].

Features

	light-weight

	intuitive async support

	intuitive test runner executable

	test coverage support and reporting

	uses the assert module

	assert.eql() alias of assert.deepEqual()

	assert.response() http response utility

	assert.includes()

	assert.type()

	assert.isNull()

	assert.isUndefined()

	assert.isNotNull()

	assert.isDefined()

	assert.match()

	assert.length()

Installation

To install both expresso and node-jscoverage run:

$ make install

To install expresso alone (no build required) run:

$ make install-expresso

Install via npm:

$ npm install expresso

0.6.2 / 2010-08-03

	Added assert.type()

	Renamed assert.isNotUndefined() to assert.isDefined()

	Fixed assert.includes() param ordering

0.6.0 / 2010-07-31

	Added docs/api.html

	Added -w, –watch

	Added Array support to assert.includes()

	Added; outputting exceptions immediately. Closes #19

	Fixed assert.includes() param ordering

	Fixed assert.length() param ordering

	Fixed jscoverage links

0.5.0 / 2010-07-16

	Added support for async exports

	Added timeout support to assert.response(). Closes #3

	Added 4th arg callback support to assert.response()

	Added assert.length()

	Added assert.match()

	Added assert.isUndefined()

	Added assert.isNull()

	Added assert.includes()

	Added growlnotify support via -g, –growl

	Added -o, –only TESTS. Ex: –only “test foo()” –only “test foo(), test bar()”

	Removed profanity

0.4.0 / 2010-07-09

	Added reporting source coverage (respects –boring for color haters)

	Added callback to assert.response(). Closes #12

	Fixed; putting exceptions to stderr. Closes #13

0.3.1 / 2010-06-28

	Faster assert.response()

0.3.0 / 2010-06-28

	Added -p, –port NUM flags

	Added assert.response(). Closes #11

0.2.1 / 2010-06-25

	Fixed issue with reporting object assertions

0.2.0 / 2010-06-21

	Added make uninstall

	Added better readdir() failure message

	Fixed make install for kiwi

0.1.0 / 2010-06-15

	Added better usage docs via –help

	Added better conditional color support

	Added pre exit assertion support

0.0.3 / 2010-06-02

	Added more room for filenames in test coverage

	Added boring output support via –boring (suppress colored output)

	Fixed async failure exit status

0.0.2 / 2010-05-30

	Fixed exit status for CI support

0.0.1 / 2010-05-30

	Initial release

node-jscoverage

JScoverage [http://siliconforks.com/jscoverage/] for node.

Installation

$./configure && make && make install

 Expresso [http://github.com/visionmedia/expresso] is a JavaScript TDD [http://en.wikipedia.org/wiki/Test-driven_development] framework written for nodejs [http://nodejs.org]. Expresso is extremely fast, and is packed with features such as additional assertion methods, code coverage reporting, CI support, and more.

Features

	light-weight

	intuitive async support

	intuitive test runner executable

	test coverage support and reporting via node-jscoverage [http://github.com/visionmedia/node-jscoverage]

	uses and extends the core assert module

	assert.eql() alias of assert.deepEqual()

	assert.response() http response utility

	assert.includes()

	assert.isNull()

	assert.isUndefined()

	assert.isNotNull()

	assert.isDefined()

	assert.match()

	assert.length()

Installation

To install both expresso and node-jscoverage run
the command below, which will first compile node-jscoverage:

$ make install

To install expresso alone without coverage reporting run:

$ make install-expresso

Install via npm:

$ npm install expresso

Examples

Examples

To define tests we simply export several functions:

exports['test String#length'] = function(assert){
 assert.equal(6, 'foobar'.length);
};

Alternatively for large numbers of tests you may want to
export your own object containing the tests, however this
is essentially the as above:

module.exports = {
 'test String#length': function(assert){
 assert.equal(6, 'foobar'.length);
 }
};

If you prefer not to use quoted keys:

exports.testsStringLength = function(assert){
 assert.equal(6, 'foobar'.length);
};

The second argument passed to each callback is beforeExit,
which is typically used to assert that callbacks have been
invoked.

exports.testAsync = function(assert, beforeExit){
 var n = 0;
 setTimeout(function(){
 ++n;
 assert.ok(true);
 }, 200);
 setTimeout(function(){
 ++n;
 assert.ok(true);
 }, 200);
 beforeExit(function(){
 assert.equal(2, n, 'Ensure both timeouts are called');
 });
};

Assert Utilities

assert.isNull(val[, msg])

Asserts that the given val is null.

assert.isNull(null);

assert.isNotNull(val[, msg])

Asserts that the given val is not null.

assert.isNotNull(undefined);
assert.isNotNull(false);

assert.isUndefined(val[, msg])

Asserts that the given val is undefined.

assert.isUndefined(undefined);

assert.isDefined(val[, msg])

Asserts that the given val is not undefined.

assert.isDefined(null);
assert.isDefined(false);

assert.match(str, regexp[, msg])

Asserts that the given str matches regexp.

assert.match('foobar', /^foo(bar)?/);
assert.match('foo', /^foo(bar)?/);

assert.length(val, n[, msg])

Assert that the given val has a length of n.

assert.length([1,2,3], 3);
assert.length('foo', 3);

assert.type(obj, type[, msg])

Assert that the given obj is typeof type.

assert.type(3, 'number');

assert.eql(a, b[, msg])

Assert that object b is equal to object a. This is an
alias for the core assert.deepEqual() method which does complex
comparisons, opposed to assert.equal() which uses ==.

assert.eql('foo', 'foo');
assert.eql([1,2], [1,2]);
assert.eql({ foo: 'bar' }, { foo: 'bar' });

assert.includes(obj, val[, msg])

Assert that obj is within val. This method supports _Array_s
and _Strings_s.

assert.includes([1,2,3], 3);
assert.includes('foobar', 'foo');
assert.includes('foobar', 'bar');

assert.response(server, req, res|fn[, msg|fn])

Performs assertions on the given server, which should not call
listen(), as this is handled internally by expresso and the server
is killed after all responses have completed. This method works with
any http.Server instance, so Connect and Express servers will work
as well.

The req object may contain:

	url request url

	timeout timeout in milliseconds

	method HTTP method

	data request body

	headers headers object

The res object may be a callback function which
receives the response for assertions, or an object
which is then used to perform several assertions
on the response with the following properties:

	body assert response body

	status assert response status code

	header assert that all given headers match (unspecified are ignored)

When providing res you may then also pass a callback function
as the fourth argument for additional assertions.

Below are some examples:

assert.response(server, {
 url: '/', timeout: 500
}, {
 body: 'foobar'
});

assert.response(server, {
 url: '/',
 method: 'GET'
},{
 body: '{"name":"tj"}',
 status: 200,
 headers: {
 'Content-Type': 'application/json; charset=utf8',
 'X-Foo': 'bar'
 }
});

assert.response(server, {
 url: '/foo',
 method: 'POST',
 data: 'bar baz'
},{
 body: '/foo bar baz',
 status: 200
}, 'Test POST');

assert.response(server, {
 url: '/foo',
 method: 'POST',
 data: 'bar baz'
},{
 body: '/foo bar baz',
 status: 200
}, function(res){
 // All done, do some more tests if needed
});

assert.response(server, {
 url: '/'
}, function(res){
 assert.ok(res.body.indexOf('tj') >= 0, 'Test assert.response() callback');
});

expresso(1)

To run a single test suite (file) run:

$ expresso test/a.test.js

To run several suites we may simply append another:

$ expresso test/a.test.js test/b.test.js

We can also pass a whitelist of tests to run within all suites:

$ expresso --only "foo()" --only "bar()"

Or several with one call:

$ expresso --only "foo(), bar()"

Globbing is of course possible as well:

$ expresso test/*

When expresso is called without any files, _test/*_ is the default,
so the following is equivalent to the command above:

$ expresso

If you wish to unshift a path to require.paths before
running tests, you may use the -I or --include flag.

$ expresso --include lib test/*

The previous example is typically what I would recommend, since expresso
supports test coverage via node-jscoverage [http://github.com/visionmedia/node-jscoverage] (bundled with expresso),
so you will need to expose an instrumented version of you library.

To instrument your library, simply run node-jscoverage [http://github.com/visionmedia/node-jscoverage],
passing the src and dest directories:

$ node-jscoverage lib lib-cov

Now we can run our tests again, using the lib-cov directory that has been
instrumented with coverage statements:

$ expresso -I lib-cov test/*

The output will look similar to below, depending on your test coverage of course :)

[image: node coverage]

To make this process easier expresso has the -c or –cov which essentially
does the same as the two commands above. The following two commands will
run the same tests, however one will auto-instrument, and unshift lib-cov,
and the other will run tests normally:

$ expresso -I lib test/*
$ expresso -I lib --cov test/*

Currently coverage is bound to the lib directory, however in the
future --cov will most likely accept a path.

Async Exports

Sometimes it is useful to postpone running of tests until a callback or event has fired, currently the exports.foo = function(){}; syntax is supported for this:

setTimeout(function(){
 exports['test async exports'] = function(assert){
 assert.ok('wahoo');
 };
}, 100);

Connect

Connect is an extensible HTTP server framework for node [http://nodejs.org], providing high performance “plugins” known as middleware.

Connect is bundled with over 14 commonly used middleware, including
a logger, session support, cookie parser, and more [http://senchalabs.github.com/connect]. Be sure to view the 1.0 documentation [http://senchalabs.github.com/connect/].

1.0 Migration Guide

Connect 1.0 is a near-complete rewrite of Connect, with this
comes some changes, including some (minor) API changes,
and removal of a few middleware, which you are welcome to
rip out of previous versions as third-party middleware.

Middleware Removed

	cache cached everything. This is less than ideal for dynamic apps, rendering this middleware relatively useless.

	conditionalGet blanketed all requests, requiring the entire response to be computed before a response could be concluded. This is extremely wasteful.

	staticGzip useless. gzip / ship assets to a CDN

	gzip buggy

	lint lame

Middleware Renamed

	staticProvider is now static

	bodyDecoder is now bodyParser

	cookieDecoder is now cookieParser

Middleware Added

	limit [http://senchalabs.github.com/connect/middleware-limit.html]

	profiler [http://senchalabs.github.com/connect/middleware-profiler.html]

	responseTime [http://senchalabs.github.com/connect/middleware-responseTime.html]

connect.createServer()

The connect.createServer() method is now optional, and equivalent to connect(). For example:

 connect.createServer(
 connect.logger()
 , connect.static(__dirname)
).listen(3000);

is the same as:

 connect(
 connect.logger()
 , connect.static(__dirname)
).listen(3000);

When an options object is passed as the first argument it is
assumed to be an https server:

 connect({ options here }
 connect.logger()
 , connect.static(__dirname)
).listen(443);

Running Tests

first:

$ git submodule update --init

then:

$ make test

Authors

Below is the output from git-summary [http://github.com/visionmedia/git-extras].

 project: connect
 commits: 1408
 files : 100
 authors:
 1184 Tj Holowaychuk
 191 Tim Caswell
 8 Astro
 5 Nathan Rajlich
 4 Jakub Nešetřil
 2 Aaron Heckmann
 2 Fabian Jakobs
 2 Jacques Crocker
 2 James Campos
 1 Jakub Nesetril
 1 Andreas Lind Petersen
 1 Joshua Peek
 1 Jxck
 1 Gregory McWhirter
 1 Eran Hammer-Lahav
 1 Bart Teeuwisse
 1 Guillermo Rauch

Node Compatibility

Connect < 1.0.0 is compatible with node 0.2.x

Connect >= 1.0.0 is compatible with node 0.4.x

License

View the LICENSE [https://github.com/senchalabs/connect/blob/master/LICENSE] file.

1.0.3 / 2011-03-03

	Fixed; static.send() invokes callback with connection error

1.0.2 / 2011-03-02

	Fixed exported connect function

	Fixed package.json; node “>= 0.4.1 < 0.5.0”

1.0.1 / 2011-03-02

	Added Session#save(fn). Closes #213

	Added callback support to connect.static.send() for express

	Added connect.static.send() “path” option

	Fixed content-type in static() for index.html

1.0.0 / 2011-03-01

	Added stack, message, and dump errorHandler option aliases

	Added req.originalMethod to methodOverride

	Added favicon() maxAge option support

	Added connect() alternative to connect.createServer()

	Added new documentation [http://senchalabs.github.com/connect]

	Added Range support to static()

	Added HTTPS support

	Rewrote session middleware. The session API now allows for
session-specific cookies, so you may alter each individually.
Click to view the new session api [http://senchalabs.github.com/connect/middleware-session.html].

	Added middleware self-awareness. This helps prevent
middleware breakage when used within mounted servers.
For example cookieParser() will not parse cookies more
than once even when within a mounted server.

	Added new examples in the ./examples directory

	Added limit() [http://senchalabs.github.com/connect/middleware-limit.html] middleware

	Added profiler() [http://senchalabs.github.com/connect/middleware-profiler.html] middleware

	Added responseTime() [http://senchalabs.github.com/connect/middleware-responseTime.html] middleware

	Renamed staticProvider to static

	Renamed bodyDecoder to bodyParser

	Renamed cookieDecoder to cookieParser

	Fixed ETag quotes. [reported by papandreou]

	Fixed If-None-Match comma-delimited ETag support. [reported by papandreou]

	Fixed; only set req.originalUrl once. Closes #124

	Fixed symlink support for static(). Closes #123

0.5.10 / 2011-02-14

	Fixed SID space issue. Closes #196

	Fixed; proxy res.end() to commit session data

	Fixed directory traversal attack in staticProvider. Closes #198

0.5.9 / 2011-02-09

	qs >= 0.0.4

0.5.8 / 2011-02-04

	Added qs dependency

	Fixed router race-condition causing possible failure
when next()ing to one or more routes with parallel
requests

0.5.7 / 2011-02-01

	Added onvhost() call so Express (and others) can know when they are

	Revert “Added stylus support” (use the middleware which ships with stylus)

	Removed custom Server#listen() to allow regular http.Server#listen() args to work properly

	Fixed long standing router issue (#83) that causes ‘.’ to be disallowed within named placeholders in routes [Andreas Lind Petersen]

	Fixed utils.uid() length error [Jxck]
mounted

0.5.6 / 2011-01-23

	Added stylus support to compiler

	favicon.js cleanup

	compiler.js cleanup

	bodyDecoder.js cleanup

0.5.5 / 2011-01-13

	Changed; using sha256 HMAC instead of md5. [Paul Querna]

	Changed; generated a longer random UID, without time influence. [Paul Querna]

	Fixed; session middleware throws when secret is not present. [Paul Querna]

0.5.4 / 2011-01-07

	Added; throw when router path or callback is missing

	Fixed; next(err) on cookie parse exception instead of ignoring

	Revert “Added utils.pathname(), memoized url.parse(str).pathname”

0.5.3 / 2011-01-05

	Added docs/api.html

	Added utils.pathname(), memoized url.parse(str).pathname

	Fixed session.id issue. Closes #183

	Changed; Defaulting staticProvider maxAge to 0 not 1 year. Closes #179

	Removed bad outdated docs, we need something new / automated eventually

0.5.2 / 2010-12-28

	Added default OPTIONS support to router middleware

0.5.1 / 2010-12-28

	Added req.session.id mirroring req.sessionID

	Refactored router, exposing connect.router.methods

	Exclude non-lib files from npm

	Removed imposed headers X-Powered-By, Server, etc

0.5.0 / 2010-12-06

	Added ./index.js

	Added route segment precondition support and example

	Added named capture group support to router

0.4.0 / 2010-11-29

	Added basicAuth middleware

	Added more HTTP methods to the router middleware

0.3.0 / 2010-07-21

	Added staticGzip middleware

	Added connect.utils to expose utils

	Added connect.session.Session

	Added connect.session.Store

	Added connect.session.MemoryStore

	Added connect.middleware to expose the middleware getters

	Added buffer option to logger for performance increase

	Added favicon middleware for serving your own favicon or the connect default

	Added option support to staticProvider, can now pass root and lifetime.

	Added; mounted Server instances now have the route property exposed for reflection

	Added support for callback as first arg to Server#use()

	Added support for next(true) in router to bypass match attempts

	Added Server#listen() host support

	Added Server#route when Server#use() is called with a route on a Server instance

	Added methodOverride X-HTTP-Method-Override support

	Refactored session internals, adds secret option

	Renamed lifetime option to maxAge in staticProvider

	Removed connect(1), it is now spark(1) [http://github.com/senchalabs/spark]

	Removed connect(1) dependency on examples, they can all now run with node(1)

	Remove a typo that was leaking a global.

	Removed Object.prototype forEach() and map() methods

	Removed a few utils not used

	Removed connect.createApp()

	Removed res.simpleBody()

	Removed format middleware

	Removed flash middleware

	Removed redirect middleware

	Removed jsonrpc middleware, use visionmedia/connect-jsonrpc [http://github.com/visionmedia/connect-jsonrpc]

	Removed pubsub middleware

	Removed need for params.{captures,splat} in router middleware, params is an array

	Changed; compiler no longer 404s

	Changed; router signature now matches connect middleware signature

	Fixed a require in session for default MemoryStore

	Fixed nasty request body bug in router. Closes #54

	Fixed less support in compiler

	Fixed bug preventing proper bubbling of exceptions in mounted servers

	Fixed bug in Server#use() preventing Server instances as the first arg

	Fixed ENOENT special case, is now treated as any other exception

	Fixed spark env support

0.2.1 / 2010-07-09

	Added support for router next() to continue calling matched routes

	Added mime type for cache.manifest files.

	Changed compiler middleware to use async require

	Changed session api, stores now only require #get(), and #set()

	Fixed cacheManifest by adding utils.find() back

0.2.0 / 2010-07-01

	Added calls to Session() casts the given object as a Session instance

	Added passing of next() to router callbacks. Closes #46

	Changed; MemoryStore#destroy() removes req.session

	Changed res.redirect("back") to default to “/” when Referr?er is not present

	Fixed staticProvider urlencoded paths issue. Closes #47

	Fixed staticProvider middleware responding to GET requests

	Fixed jsonrpc middleware Accept header check. Closes #43

	Fixed logger format option

	Fixed typo in compiler middleware preventing the dest option from working

0.1.0 / 2010-06-25

	Revamped the api, view the Connect documentation [http://extjs.github.com/Connect/index.html#Middleware-Authoring] for more info (hover on the right for menu)

	Added extended api docs [http://extjs.github.com/Connect/api.html]

	Added docs for several more middleware layers

	Added connect.Server#use()

	Added compiler middleware which provides arbitrary static compilation

	Added req.originalUrl

	Removed blog example

	Removed sass middleware (use compiler)

	Removed less middleware (use compiler)

	Renamed middleware to be camelcase, body-decoder is now bodyDecoder etc.

	Fixed req.url mutation bug when matching connect.Server#use() routes

	Fixed mkdir -p implementation used in bin/connect. Closes #39

	Fixed bug in bodyDecoder throwing exceptions on request empty bodies

	make install installing lib to $LIB_PREFIX aka $HOME/.node_libraries

0.0.6 / 2010-06-22

	Added static middleware usage example

	Added support for regular expressions as paths for router

	Added util.merge()

	Increased performance of static by ~ 200 rps

	Renamed the rest middleware to router

	Changed rest api to accept a callback function

	Removed router middleware

	Removed proto.js, only Object#forEach() remains

0.0.5 / 2010-06-21

	Added Server#use() which contains the Layer normalization logic

	Added documentation for several middleware

	Added several new examples

	Added less middleware

	Added repl middleware

	Added vhost middleware

	Added flash middleware

	Added cookie middleware

	Added session middleware

	Added utils.htmlEscape()

	Added utils.base64Decode()

	Added utils.base64Encode()

	Added utils.uid()

	Added bin/connect app path and –config path support for .js suffix, although optional. Closes #26

	Moved mime code to utils.mime, ex utils.mime.types, and utils.mime.type()

	Renamed req.redirect() to res.redirect(). Closes #29

	Fixed sass 404 on ENOENT

	Fixed +new Date duplication. Closes #24

0.0.4 / 2010-06-16

	Added workerPidfile() to bin/connect

	Added –workers support to bin/connect stop and status commands

	Added redirect middleware

	Added better –config support to bin/connect. All flags can be utilized

	Added auto-detection of ./config.js

	Added config example

	Added net.Server support to bin/connect

	Writing worker pids relative to env.pidfile

	s/parseQuery/parse/g

	Fixed npm support

0.0.3 / 2010-06-16

	Fixed node dependency in package.json, now “>= 0.1.98-0” to support HEAD

0.0.2 / 2010-06-15

	Added -V, --version to bin/connect

	Added utils.parseCookie()

	Added utils.serializeCookie()

	Added utils.toBoolean()

	Added sass middleware

	Added cookie middleware

	Added format middleware

	Added lint middleware

	Added rest middleware

	Added ./package.json (npm install connect)

	Added handleError() support

	Added process.connectEnv

	Added custom log format support to log middleware

	Added arbitrary env variable support to bin/connect (ext: –logFormat ”:method :url”)

	Added -w, –workers to bin/connect

	Added bin/connect support for –user NAME and –group NAME

	Fixed url re-writing support

0.0.1 / 2010-06-03

	Initial release

Expresso

TDD framework for nodejs [http://nodejs.org].

Features

	light-weight

	intuitive async support

	intuitive test runner executable

	test coverage support and reporting

	uses the assert module

	assert.eql() alias of assert.deepEqual()

	assert.response() http response utility

	assert.includes()

	assert.type()

	assert.isNull()

	assert.isUndefined()

	assert.isNotNull()

	assert.isDefined()

	assert.match()

	assert.length()

Installation

To install both expresso and node-jscoverage run:

$ make install

To install expresso alone (no build required) run:

$ make install-expresso

Install via npm:

$ npm install expresso

License

(The MIT License)

Copyright (c) 2010 TJ Holowaychuk <

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

0.7.2 / 2010-12-29

	Fixed problem with listen() sometimes firing on the same tick [guillermo]

0.7.1 / 2010-12-28

	Fixed assert.request() client logic into an issue() function, fired upon the listen() callback if the server doesn’t have an assigned fd. [guillermo]

	Removed --watch

0.7.0 / 2010-11-19

	Removed assert from test function signature
Just use require('assert') :) this will make integration
with libraries like should [http://github.com/visionmedia/should] cleaner.

0.6.4 / 2010-11-02

	Added regexp support to assert.response() headers

	Removed waitForExit code, causing issues

0.6.3 / 2010-11-02

	Added assert.response() body RegExp support

	Fixed issue with –serial not executing files sequentially. Closes #42

	Fixed hang when modules use setInterval - monitor running tests & force the process to quit after all have completed + timeout [Steve Mason]

0.6.2 / 2010-09-17

	Added node-jsocoverage to package.json (aka will respect npm’s binroot)

	Added -t, –timeout MS option, defaulting to 2000 ms

	Added -s, –serial

	PREFIX clobberable

	Fixed assert.response() for latest node

	Fixed cov reporting from exploding on empty files

0.6.2 / 2010-08-03

	Added assert.type()

	Renamed assert.isNotUndefined() to assert.isDefined()

	Fixed assert.includes() param ordering

0.6.0 / 2010-07-31

	Added docs/api.html

	Added -w, –watch

	Added Array support to assert.includes()

	Added; outputting exceptions immediately. Closes #19

	Fixed assert.includes() param ordering

	Fixed assert.length() param ordering

	Fixed jscoverage links

0.5.0 / 2010-07-16

	Added support for async exports

	Added timeout support to assert.response(). Closes #3

	Added 4th arg callback support to assert.response()

	Added assert.length()

	Added assert.match()

	Added assert.isUndefined()

	Added assert.isNull()

	Added assert.includes()

	Added growlnotify support via -g, –growl

	Added -o, –only TESTS. Ex: –only “test foo()” –only “test foo(), test bar()”

	Removed profanity

0.4.0 / 2010-07-09

	Added reporting source coverage (respects –boring for color haters)

	Added callback to assert.response(). Closes #12

	Fixed; putting exceptions to stderr. Closes #13

0.3.1 / 2010-06-28

	Faster assert.response()

0.3.0 / 2010-06-28

	Added -p, –port NUM flags

	Added assert.response(). Closes #11

0.2.1 / 2010-06-25

	Fixed issue with reporting object assertions

0.2.0 / 2010-06-21

	Added make uninstall

	Added better readdir() failure message

	Fixed make install for kiwi

0.1.0 / 2010-06-15

	Added better usage docs via –help

	Added better conditional color support

	Added pre exit assertion support

0.0.3 / 2010-06-02

	Added more room for filenames in test coverage

	Added boring output support via –boring (suppress colored output)

	Fixed async failure exit status

0.0.2 / 2010-05-30

	Fixed exit status for CI support

0.0.1 / 2010-05-30

	Initial release

node-jscoverage

JScoverage [http://siliconforks.com/jscoverage/] for node.

Installation

$./configure && make && make install

 Expresso [http://github.com/visionmedia/expresso] is a JavaScript TDD [http://en.wikipedia.org/wiki/Test-driven_development] framework written for nodejs [http://nodejs.org]. Expresso is extremely fast, and is packed with features such as additional assertion methods, code coverage reporting, CI support, and more.

Features

	light-weight

	intuitive async support

	intuitive test runner executable

	test coverage support and reporting via node-jscoverage [http://github.com/visionmedia/node-jscoverage]

	uses and extends the core assert module

	assert.eql() alias of assert.deepEqual()

	assert.response() http response utility

	assert.includes()

	assert.isNull()

	assert.isUndefined()

	assert.isNotNull()

	assert.isDefined()

	assert.match()

	assert.length()

Installation

To install both expresso and node-jscoverage run
the command below, which will first compile node-jscoverage:

$ make install

To install expresso alone without coverage reporting run:

$ make install-expresso

Install via npm:

$ npm install expresso

Examples

To define tests we simply export several functions:

exports['test String#length'] = function(){
 assert.equal(6, 'foobar'.length);
};

Alternatively for large numbers of tests you may want to
export your own object containing the tests, however this
is essentially the as above:

module.exports = {
 'test String#length': function(){
 assert.equal(6, 'foobar'.length);
 }
};

If you prefer not to use quoted keys:

exports.testsStringLength = function(){
 assert.equal(6, 'foobar'.length);
};

The argument passed to each callback is beforeExit,
which is typically used to assert that callbacks have been
invoked.

exports.testAsync = function(beforeExit){
 var n = 0;
 setTimeout(function(){
 ++n;
 assert.ok(true);
 }, 200);
 setTimeout(function(){
 ++n;
 assert.ok(true);
 }, 200);
 beforeExit(function(){
 assert.equal(2, n, 'Ensure both timeouts are called');
 });
};

Assert Utilities

assert.isNull(val[, msg])

Asserts that the given val is null.

assert.isNull(null);

assert.isNotNull(val[, msg])

Asserts that the given val is not null.

assert.isNotNull(undefined);
assert.isNotNull(false);

assert.isUndefined(val[, msg])

Asserts that the given val is undefined.

assert.isUndefined(undefined);

assert.isDefined(val[, msg])

Asserts that the given val is not undefined.

assert.isDefined(null);
assert.isDefined(false);

assert.match(str, regexp[, msg])

Asserts that the given str matches regexp.

assert.match('foobar', /^foo(bar)?/);
assert.match('foo', /^foo(bar)?/);

assert.length(val, n[, msg])

Assert that the given val has a length of n.

assert.length([1,2,3], 3);
assert.length('foo', 3);

assert.type(obj, type[, msg])

Assert that the given obj is typeof type.

assert.type(3, 'number');

assert.eql(a, b[, msg])

Assert that object b is equal to object a. This is an
alias for the core assert.deepEqual() method which does complex
comparisons, opposed to assert.equal() which uses ==.

assert.eql('foo', 'foo');
assert.eql([1,2], [1,2]);
assert.eql({ foo: 'bar' }, { foo: 'bar' });

assert.includes(obj, val[, msg])

Assert that obj is within val. This method supports _Array_s
and _Strings_s.

assert.includes([1,2,3], 3);
assert.includes('foobar', 'foo');
assert.includes('foobar', 'bar');

assert.response(server, req, res|fn[, msg|fn])

Performs assertions on the given server, which should not call
listen(), as this is handled internally by expresso and the server
is killed after all responses have completed. This method works with
any http.Server instance, so Connect and Express servers will work
as well.

The req object may contain:

	url request url

	timeout timeout in milliseconds

	method HTTP method

	data request body

	headers headers object

The res object may be a callback function which
receives the response for assertions, or an object
which is then used to perform several assertions
on the response with the following properties:

	body assert response body (regexp or string)

	status assert response status code

	header assert that all given headers match (unspecified are ignored, use a regexp or string)

When providing res you may then also pass a callback function
as the fourth argument for additional assertions.

Below are some examples:

assert.response(server, {
 url: '/', timeout: 500
}, {
 body: 'foobar'
});

assert.response(server, {
 url: '/',
 method: 'GET'
},{
 body: '{"name":"tj"}',
 status: 200,
 headers: {
 'Content-Type': 'application/json; charset=utf8',
 'X-Foo': 'bar'
 }
});

assert.response(server, {
 url: '/foo',
 method: 'POST',
 data: 'bar baz'
},{
 body: '/foo bar baz',
 status: 200
}, 'Test POST');

assert.response(server, {
 url: '/foo',
 method: 'POST',
 data: 'bar baz'
},{
 body: '/foo bar baz',
 status: 200
}, function(res){
 // All done, do some more tests if needed
});

assert.response(server, {
 url: '/'
}, function(res){
 assert.ok(res.body.indexOf('tj') >= 0, 'Test assert.response() callback');
});

expresso(1)

To run a single test suite (file) run:

$ expresso test/a.test.js

To run several suites we may simply append another:

$ expresso test/a.test.js test/b.test.js

We can also pass a whitelist of tests to run within all suites:

$ expresso --only "foo()" --only "bar()"

Or several with one call:

$ expresso --only "foo(), bar()"

Globbing is of course possible as well:

$ expresso test/*

When expresso is called without any files, _test/*_ is the default,
so the following is equivalent to the command above:

$ expresso

If you wish to unshift a path to require.paths before
running tests, you may use the -I or --include flag.

$ expresso --include lib test/*

The previous example is typically what I would recommend, since expresso
supports test coverage via node-jscoverage [http://github.com/visionmedia/node-jscoverage] (bundled with expresso),
so you will need to expose an instrumented version of you library.

To instrument your library, simply run node-jscoverage [http://github.com/visionmedia/node-jscoverage],
passing the src and dest directories:

$ node-jscoverage lib lib-cov

Now we can run our tests again, using the lib-cov directory that has been
instrumented with coverage statements:

$ expresso -I lib-cov test/*

The output will look similar to below, depending on your test coverage of course :)

[image: node coverage]

To make this process easier expresso has the -c or –cov which essentially
does the same as the two commands above. The following two commands will
run the same tests, however one will auto-instrument, and unshift lib-cov,
and the other will run tests normally:

$ expresso -I lib test/*
$ expresso -I lib --cov test/*

Currently coverage is bound to the lib directory, however in the
future --cov will most likely accept a path.

Async Exports

Sometimes it is useful to postpone running of tests until a callback or event has fired, currently the exports.foo = function(){}; syntax is supported for this:

setTimeout(function(){
 exports['test async exports'] = function(){
 assert.ok('wahoo');
 };
}, 100);

Express

Insanely fast (and small) server-side JavaScript web development framework
built on node [http://nodejs.org] and Connect [http://github.com/senchalabs/connect].

 var app = express.createServer();

 app.get('/', function(req, res){
 res.send('Hello World');
 });

 app.listen(3000);

Installation

$ npm install express

Features

	Robust routing

	Redirection helpers

	Dynamic view helpers

	Content negotiation

	Focus on high performance

	View rendering and partials support

	Environment based configuration

	Session based flash notifications

	Built on Connect [http://github.com/senchalabs/connect]

	High test coverage

	Executable for generating applications quickly

	Application level view options

Via Connect:

	Session support

	Cache API

	Mime helpers

	ETag support

	Persistent flash notifications

	Cookie support

	JSON-RPC

	Logging

	and much more!

Contributors

The following are the major contributors of Express (in no specific order).

	TJ Holowaychuk (visionmedia [http://github.com/visionmedia])

	Ciaran Jessup (ciaranj [http://github.com/ciaranj])

	Aaron Heckmann (aheckmann [http://github.com/aheckmann])

	Guillermo Rauch (guille [http://github.com/guille])

More Information

	express-configure [http://github.com/visionmedia/express-configure] async configuration support

	express-messages [http://github.com/visionmedia/express-messages] flash notification rendering helper

	express-namespace [http://github.com/visionmedia/express-namespace] namespaced route support

	Follow tjholowaychuk [http://twitter.com/tjholowaychuk] on twitter for updates

	Google Group [http://groups.google.com/group/express-js] for discussion

	Visit the Wiki [http://github.com/visionmedia/express/wiki]

	Screencast - Introduction [http://bit.ly/eRYu0O]

	Screencast - View Partials [http://bit.ly/dU13Fx]

	Screencast - Route Specific Middleware [http://bit.ly/hX4IaH]

	Screencast - Route Path Placeholder Preconditions [http://bit.ly/eNqmVs]

Node Compatibility

Express 1.x is compatible with node 0.2.x and connect < 1.0.

Express 2.x is compatible with node 0.4.x and connect 1.x

License

(The MIT License)

Copyright (c) 2009-2011 TJ Holowaychuk <

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.0.0beta / 2011-03-03

	Added HTTPS support

	Added res.cookie() maxAge support

	Added req.header() Referrer / Referer special-case, either works

	Added mount support for res.redirect(), now respects the mount-point

	Added union() util, taking place of merge(clone()) combo

	Added stylus support to express(1) generated app

	Added secret to session middleware used in examples and generated app

	Added res.local(name, val) for progressive view locals

	Added default param support to req.param(name, default)

	Added app.disabled() and app.enabled()

	Added app.register() support for omitting leading ”.”, either works

	Added res.partial(), using the same interface as partial() within a view. Closes #539

	Added app.param() to map route params to async/sync logic

	Added; aliased app.helpers() as app.locals(). Closes #481

	Added extname with no leading ”.” support to res.contentType()

	Added cache views setting, defaulting to enabled in “production” env

	Added index file partial resolution, eg: partial(‘user’) may try views/user/index.jade.

	Added req.accepts() support for extensions

	Changed; res.download() and res.sendfile() now utilize Connect’s
static file server connect.static.send().

	Changed; replaced connect.utils.mime() with npm mime module

	Changed; allow req.query to be pre-defined (via middleware or other parent

	Changed view partial resolution, now relative to parent view

	Changed view engine signature. no longer engine.render(str, options, callback), now engine.compile(str, options) -> Function, the returned function accepts fn(locals).

	Fixed req.param() bug returning Array.prototype methods. Closes #552

	Fixed; using Stream#pipe() instead of sys.pump()
app)

	Fixed; using qs module instead of querystring

	Fixed; strip unsafe chars from jsonp callbacks

	Removed “stream threshold” setting

1.0.8 / 2011-03-01

	Allow req.query to be pre-defined (via middleware or other parent app)

	“connect”: “>= 0.5.0 < 1.0.0”. Closes #547

	Removed the long deprecated EXPRESS_ENV support

1.0.7 / 2011-02-07

	Fixed render() setting inheritance.
Mounted apps would not inherit “view engine”

1.0.6 / 2011-02-07

	Fixed view engine setting bug when period is in dirname

1.0.5 / 2011-02-05

	Added secret to generated app session() call

1.0.4 / 2011-02-05

	Added qs dependency to package.json

	Fixed namespaced require()s for latest connect support

1.0.3 / 2011-01-13

	Remove unsafe characters from JSONP callback names [Ryan Grove]

1.0.2 / 2011-01-10

	Removed nested require, using connect.router

1.0.1 / 2010-12-29

	Fixed for middleware stacked via createServer()
previously the foo middleware passed to createServer(foo)
would not have access to Express methods such as res.send()
or props like req.query etc.

1.0.0 / 2010-11-16

	Added; deduce partial object names from the last segment.
For example by default partial('forum/post', postObject) will
give you the post object, providing a meaningful default.

	Added http status code string representation to res.redirect() body

	Added; res.redirect() supporting text/plain and text/html via Accept.

	Added req.is() to aid in content negotiation

	Added partial local inheritance [suggested by masylum]. Closes #102
providing access to parent template locals.

	Added -s, –session[s] flag to express(1) to add session related middleware

	Added –template flag to express(1) to specify the
template engine to use.

	Added –css flag to express(1) to specify the
stylesheet engine to use (or just plain css by default).

	Added app.all() support [thanks aheckmann]

	Added partial direct object support.
You may now partial('user', user) providing the “user” local,
vs previously partial('user', { object: user }).

	Added route-separation example since many people question ways
to do this with CommonJS modules. Also view the blog example for
an alternative.

	Performance; caching view path derived partial object names

	Fixed partial local inheritance precedence. [reported by Nick Poulden] Closes #454

	Fixed jsonp support; text/javascript as per mailinglist discussion

1.0.0rc4 / 2010-10-14

	Added NODE_ENV support, EXPRESS_ENV is deprecated and will be removed in 1.0.0

	Added route-middleware support (very helpful, see the docs [http://expressjs.com/guide.html#Route-Middleware])

	Added jsonp callback setting to enable/disable jsonp autowrapping [Dav Glass]

	Added callback query check on response.send to autowrap JSON objects for simple webservice implementations [Dav Glass]

	Added partial() support for array-like collections. Closes #434

	Added support for swappable querystring parsers

	Added session usage docs. Closes #443

	Added dynamic helper caching. Closes #439 [suggested by maritz]

	Added authentication example

	Added basic Range support to res.sendfile() (and res.download() etc)

	Changed; express(1) generated app using 2 spaces instead of 4

	Default env to “development” again [aheckmann]

	Removed context option is no more, use “scope”

	Fixed; exposing ./support libs to examples so they can run without installs

	Fixed mvc example

1.0.0rc3 / 2010-09-20

	Added confirmation for express(1) app generation. Closes #391

	Added extending of flash formatters via app.flashFormatters

	Added flash formatter support. Closes #411

	Added streaming support to res.sendfile() using sys.pump() when >= “stream threshold”

	Added stream threshold setting for res.sendfile()

	Added res.send() HEAD support

	Added res.clearCookie()

	Added res.cookie()

	Added res.render() headers option

	Added res.redirect() response bodies

	Added res.render() status option support. Closes #425 [thanks aheckmann]

	Fixed res.sendfile() responding with 403 on malicious path

	Fixed res.download() bug; when an error occurs remove Content-Disposition

	Fixed; mounted apps settings now inherit from parent app [aheckmann]

	Fixed; stripping Content-Length / Content-Type when 204

	Fixed res.send() 204. Closes #419

	Fixed multiple Set-Cookie headers via res.header(). Closes #402

	Fixed bug messing with error handlers when listenFD() is called instead of listen(). [thanks guillermo]

1.0.0rc2 / 2010-08-17

	Added app.register() for template engine mapping. Closes #390

	Added res.render() callback support as second argument (no options)

	Added callback support to res.download()

	Added callback support for res.sendfile()

	Added support for middleware access via express.middlewareName() vs connect.middlewareName()

	Added “partials” setting to docs

	Added default expresso tests to express(1) generated app. Closes #384

	Fixed res.sendfile() error handling, defer via next()

	Fixed res.render() callback when a layout is used [thanks guillermo]

	Fixed; make install creating ~/.node_libraries when not present

	Fixed issue preventing error handlers from being defined anywhere. Closes #387

1.0.0rc / 2010-07-28

	Added mounted hook. Closes #369

	Added connect dependency to package.json

	Removed “reload views” setting and support code
development env never caches, production always caches.

	Removed param in route callbacks, signature is now
simply (req, res, next), previously (req, res, params, next).
Use req.params for path captures, req.query for GET params.

	Fixed “home” setting

	Fixed middleware/router precedence issue. Closes #366

	Fixed; configure() callbacks called immediately. Closes #368

1.0.0beta2 / 2010-07-23

	Added more examples

	Added; exporting Server constructor

	Added Server#helpers() for view locals

	Added Server#dynamicHelpers() for dynamic view locals. Closes #349

	Added support for absolute view paths

	Added; home setting defaults to Server#route for mounted apps. Closes #363

	Added Guillermo Rauch to the contributor list

	Added support for “as” for non-collection partials. Closes #341

	Fixed install.sh, ensuring ~/.node_libraries exists. Closes #362 [thanks jf]

	Fixed res.render() exceptions, now passed to next() when no callback is given [thanks guillermo]

	Fixed instanceof Array checks, now Array.isArray()

	Fixed express(1) expansion of public dirs. Closes #348

	Fixed middleware precedence. Closes #345

	Fixed view watcher, now async [thanks aheckmann]

1.0.0beta / 2010-07-15

	Re-write
	much faster

	much lighter

	Check ExpressJS.com [http://expressjs.com] for migration guide and updated docs

0.14.0 / 2010-06-15

	Utilize relative requires

	Added Static bufferSize option [aheckmann]

	Fixed caching of view and partial subdirectories [aheckmann]

	Fixed mime.type() comments now that ”.ext” is not supported

	Updated haml submodule

	Updated class submodule

	Removed bin/express

0.13.0 / 2010-06-01

	Added node v0.1.97 compatibility

	Added support for deleting cookies via Request#cookie(‘key’, null)

	Updated haml submodule

	Fixed not-found page, now using using charset utf-8

	Fixed show-exceptions page, now using using charset utf-8

	Fixed view support due to fs.readFile Buffers

	Changed; mime.type() no longer accepts ”.type” due to node extname() changes

0.12.0 / 2010-05-22

	Added node v0.1.96 compatibility

	Added view helpers export which act as additional local variables

	Updated haml submodule

	Changed ETag; removed inode, modified time only

	Fixed LF to CRLF for setting multiple cookies

	Fixed cookie complation; values are now urlencoded

	Fixed cookies parsing; accepts quoted values and url escaped cookies

0.11.0 / 2010-05-06

	Added support for layouts using different engines
	this.render(‘page.html.haml’, { layout: ‘super-cool-layout.html.ejs’ })

	this.render(‘page.html.haml’, { layout: ‘foo’ }) // assumes ‘foo.html.haml’

	this.render(‘page.html.haml’, { layout: false }) // no layout

	Updated ext submodule

	Updated haml submodule

	Fixed EJS partial support by passing along the context. Issue #307

0.10.1 / 2010-05-03

	Fixed binary uploads.

0.10.0 / 2010-04-30

	Added charset support via Request#charset (automatically assigned to ‘UTF-8’ when respond()’s
encoding is set to ‘utf8’ or ‘utf-8’.

	Added “encoding” option to Request#render(). Closes #299

	Added “dump exceptions” setting, which is enabled by default.

	Added simple ejs template engine support

	Added error reponse support for text/plain, application/json. Closes #297

	Added callback function param to Request#error()

	Added Request#sendHead()

	Added Request#stream()

	Added support for Request#respond(304, null) for empty response bodies

	Added ETag support to Request#sendfile()

	Added options to Request#sendfile(), passed to fs.createReadStream()

	Added filename arg to Request#download()

	Performance enhanced due to pre-reversing plugins so that plugins.reverse() is not called on each request

	Performance enhanced by preventing several calls to toLowerCase() in Router#match()

	Changed; Request#sendfile() now streams

	Changed; Renamed Request#halt() to Request#respond(). Closes #289

	Changed; Using sys.inspect() instead of JSON.encode() for error output

	Changed; run() returns the http.Server instance. Closes #298

	Changed; Defaulting Server#host to null (INADDR_ANY)

	Changed; Logger “common” format scale of 0.4f

	Removed Logger “request” format

	Fixed; Catching ENOENT in view caching, preventing error when “views/partials” is not found

	Fixed several issues with http client

	Fixed Logger Content-Length output

	Fixed bug preventing Opera from retaining the generated session id. Closes #292

0.9.0 / 2010-04-14

	Added DSL level error() route support

	Added DSL level notFound() route support

	Added Request#error()

	Added Request#notFound()

	Added Request#render() callback function. Closes #258

	Added “max upload size” setting

	Added “magic” variables to collection partials (__index__, __length__, __isFirst__, __isLast__). Closes #254

	Added haml.js [http://github.com/visionmedia/haml.js] submodule; removed haml-js

	Added callback function support to Request#halt() as 3rd/4th arg

	Added preprocessing of route param wildcards using param(). Closes #251

	Added view partial support (with collections etc)

	Fixed bug preventing falsey params (such as ?page=0). Closes #286

	Fixed setting of multiple cookies. Closes #199

	Changed; view naming convention is now NAME.TYPE.ENGINE (for example page.html.haml)

	Changed; session cookie is now httpOnly

	Changed; Request is no longer global

	Changed; Event is no longer global

	Changed; “sys” module is no longer global

	Changed; moved Request#download to Static plugin where it belongs

	Changed; Request instance created before body parsing. Closes #262

	Changed; Pre-caching views in memory when “cache view contents” is enabled. Closes #253

	Changed; Pre-caching view partials in memory when “cache view partials” is enabled

	Updated support to node –version 0.1.90

	Updated dependencies

	Removed set(“session cookie”) in favour of use(Session, { cookie: { ... }})

	Removed utils.mixin(); use Object#mergeDeep()

0.8.0 / 2010-03-19

	Added coffeescript example app. Closes #242

	Changed; cache api now async friendly. Closes #240

	Removed deprecated ‘express/static’ support. Use ‘express/plugins/static’

0.7.6 / 2010-03-19

	Added Request#isXHR. Closes #229

	Added make install (for the executable)

	Added express executable for setting up simple app templates

	Added “GET /public/*” to Static plugin, defaulting to /public

 Connect

Connect

Connect is an extensible HTTP server framework for node [http://nodejs.org], providing high performance “plugins” known as middleware.

Connect is bundled with over 14 commonly used middleware, including
a logger, session support, cookie parser, and more [http://senchalabs.github.com/connect]. Be sure to view the 1.0 documentation [http://senchalabs.github.com/connect/].

1.0 Migration Guide

Connect 1.0 is a near-complete rewrite of Connect, with this
comes some changes, including some (minor) API changes,
and removal of a few middleware, which you are welcome to
rip out of previous versions as third-party middleware.

Middleware Removed

	cache cached everything. This is less than ideal for dynamic apps, rendering this middleware relatively useless.

	conditionalGet blanketed all requests, requiring the entire response to be computed before a response could be concluded. This is extremely wasteful.

	staticGzip useless. gzip / ship assets to a CDN

	gzip buggy

	lint lame

Middleware Renamed

	staticProvider is now static

	bodyDecoder is now bodyParser

	cookieDecoder is now cookieParser

Middleware Added

	limit [http://senchalabs.github.com/connect/middleware-limit.html]

	profiler [http://senchalabs.github.com/connect/middleware-profiler.html]

	responseTime [http://senchalabs.github.com/connect/middleware-responseTime.html]

connect.createServer()

The connect.createServer() method is now optional, and equivalent to connect(). For example:

 connect.createServer(
 connect.logger()
 , connect.static(__dirname)
).listen(3000);

is the same as:

 connect(
 connect.logger()
 , connect.static(__dirname)
).listen(3000);

When an options object is passed as the first argument it is
assumed to be an https server:

 connect({ options here }
 connect.logger()
 , connect.static(__dirname)
).listen(443);

Running Tests

first:

$ git submodule update --init

then:

$ make test

Authors

Below is the output from git-summary [http://github.com/visionmedia/git-extras].

 project: connect
 commits: 1408
 files : 100
 authors:
 1184 Tj Holowaychuk
 191 Tim Caswell
 8 Astro
 5 Nathan Rajlich
 4 Jakub Nešetřil
 2 Aaron Heckmann
 2 Fabian Jakobs
 2 Jacques Crocker
 2 James Campos
 1 Jakub Nesetril
 1 Andreas Lind Petersen
 1 Joshua Peek
 1 Jxck
 1 Gregory McWhirter
 1 Eran Hammer-Lahav
 1 Bart Teeuwisse
 1 Guillermo Rauch

Node Compatibility

Connect < 1.0.0

License

View the LICENSE [https://github.com/senchalabs/connect/blob/master/LICENSE] file.

 1.0.1 / 2011-03-02

1.0.1 / 2011-03-02

	Added Session#save(fn). Closes #213

	Added callback support to connect.static.send() for express

	Added connect.static.send() “path” option

	Fixed content-type in static() for index.html

1.0.0 / 2011-03-01

	Added stack, message, and dump errorHandler option aliases

	Added req.originalMethod to methodOverride

	Added favicon() maxAge option support

	Added connect() alternative to connect.createServer()

	Added new documentation [http://senchalabs.github.com/connect]

	Added Range support to static()

	Added HTTPS support

	Rewrote session middleware. The session API now allows for
session-specific cookies, so you may alter each individually.
Click to view the new session api [http://senchalabs.github.com/connect/middleware-session.html].

	Added middleware self-awareness. This helps prevent
middleware breakage when used within mounted servers.
For example cookieParser() will not parse cookies more
than once even when within a mounted server.

	Added new examples in the ./examples directory

	Added limit() [http://senchalabs.github.com/connect/middleware-limit.html] middleware

	Added profiler() [http://senchalabs.github.com/connect/middleware-profiler.html] middleware

	Added responseTime() [http://senchalabs.github.com/connect/middleware-responseTime.html] middleware

	Renamed staticProvider to static

	Renamed bodyDecoder to bodyParser

	Renamed cookieDecoder to cookieParser

	Fixed ETag quotes. [reported by papandreou]

	Fixed If-None-Match comma-delimited ETag support. [reported by papandreou]

	Fixed; only set req.originalUrl once. Closes #124

	Fixed symlink support for static(). Closes #123

0.5.10 / 2011-02-14

	Fixed SID space issue. Closes #196

	Fixed; proxy res.end() to commit session data

	Fixed directory traversal attack in staticProvider. Closes #198

0.5.9 / 2011-02-09

	qs >= 0.0.4

0.5.8 / 2011-02-04

	Added qs dependency

	Fixed router race-condition causing possible failure
when next()ing to one or more routes with parallel
requests

0.5.7 / 2011-02-01

	Added onvhost() call so Express (and others) can know when they are

	Revert “Added stylus support” (use the middleware which ships with stylus)

	Removed custom Server#listen() to allow regular http.Server#listen() args to work properly

	Fixed long standing router issue (#83) that causes ‘.’ to be disallowed within named placeholders in routes [Andreas Lind Petersen]

	Fixed utils.uid() length error [Jxck]
mounted

0.5.6 / 2011-01-23

	Added stylus support to compiler

	favicon.js cleanup

	compiler.js cleanup

	bodyDecoder.js cleanup

0.5.5 / 2011-01-13

	Changed; using sha256 HMAC instead of md5. [Paul Querna]

	Changed; generated a longer random UID, without time influence. [Paul Querna]

	Fixed; session middleware throws when secret is not present. [Paul Querna]

0.5.4 / 2011-01-07

	Added; throw when router path or callback is missing

	Fixed; next(err) on cookie parse exception instead of ignoring

	Revert “Added utils.pathname(), memoized url.parse(str).pathname”

0.5.3 / 2011-01-05

	Added docs/api.html

	Added utils.pathname(), memoized url.parse(str).pathname

	Fixed session.id issue. Closes #183

	Changed; Defaulting staticProvider maxAge to 0 not 1 year. Closes #179

	Removed bad outdated docs, we need something new / automated eventually

0.5.2 / 2010-12-28

	Added default OPTIONS support to router middleware

0.5.1 / 2010-12-28

	Added req.session.id mirroring req.sessionID

	Refactored router, exposing connect.router.methods

	Exclude non-lib files from npm

	Removed imposed headers X-Powered-By, Server, etc

0.5.0 / 2010-12-06

	Added ./index.js

	Added route segment precondition support and example

	Added named capture group support to router

0.4.0 / 2010-11-29

	Added basicAuth middleware

	Added more HTTP methods to the router middleware

0.3.0 / 2010-07-21

	Added staticGzip middleware

	Added connect.utils to expose utils

	Added connect.session.Session

	Added connect.session.Store

	Added connect.session.MemoryStore

	Added connect.middleware to expose the middleware getters

	Added buffer option to logger for performance increase

	Added favicon middleware for serving your own favicon or the connect default

	Added option support to staticProvider, can now pass root and lifetime.

	Added; mounted Server instances now have the route property exposed for reflection

	Added support for callback as first arg to Server#use()

	Added support for next(true) in router to bypass match attempts

	Added Server#listen() host support

	Added Server#route when Server#use() is called with a route on a Server instance

	Added methodOverride X-HTTP-Method-Override support

	Refactored session internals, adds secret option

	Renamed lifetime option to maxAge in staticProvider

	Removed connect(1), it is now spark(1) [http://github.com/senchalabs/spark]

	Removed connect(1) dependency on examples, they can all now run with node(1)

	Remove a typo that was leaking a global.

	Removed Object.prototype forEach() and map() methods

	Removed a few utils not used

	Removed connect.createApp()

	Removed res.simpleBody()

	Removed format middleware

	Removed flash middleware

	Removed redirect middleware

	Removed jsonrpc middleware, use visionmedia/connect-jsonrpc [http://github.com/visionmedia/connect-jsonrpc]

	Removed pubsub middleware

	Removed need for params.{captures,splat} in router middleware, params is an array

	Changed; compiler no longer 404s

	Changed; router signature now matches connect middleware signature

	Fixed a require in session for default MemoryStore

	Fixed nasty request body bug in router. Closes #54

	Fixed less support in compiler

	Fixed bug preventing proper bubbling of exceptions in mounted servers

	Fixed bug in Server#use() preventing Server instances as the first arg

	Fixed ENOENT special case, is now treated as any other exception

	Fixed spark env support

0.2.1 / 2010-07-09

	Added support for router next() to continue calling matched routes

	Added mime type for cache.manifest files.

	Changed compiler middleware to use async require

	Changed session api, stores now only require #get(), and #set()

	Fixed cacheManifest by adding utils.find() back

0.2.0 / 2010-07-01

	Added calls to Session() casts the given object as a Session instance

	Added passing of next() to router callbacks. Closes #46

	Changed; MemoryStore#destroy() removes req.session

	Changed res.redirect("back") to default to “/” when Referr?er is not present

	Fixed staticProvider urlencoded paths issue. Closes #47

	Fixed staticProvider middleware responding to GET requests

	Fixed jsonrpc middleware Accept header check. Closes #43

	Fixed logger format option

	Fixed typo in compiler middleware preventing the dest option from working

0.1.0 / 2010-06-25

	Revamped the api, view the Connect documentation [http://extjs.github.com/Connect/index.html#Middleware-Authoring] for more info (hover on the right for menu)

	Added extended api docs [http://extjs.github.com/Connect/api.html]

	Added docs for several more middleware layers

	Added connect.Server#use()

	Added compiler middleware which provides arbitrary static compilation

	Added req.originalUrl

	Removed blog example

	Removed sass middleware (use compiler)

	Removed less middleware (use compiler)

	Renamed middleware to be camelcase, body-decoder is now bodyDecoder etc.

	Fixed req.url mutation bug when matching connect.Server#use() routes

	Fixed mkdir -p implementation used in bin/connect. Closes #39

	Fixed bug in bodyDecoder throwing exceptions on request empty bodies

	make install installing lib to $LIB_PREFIX aka $HOME/.node_libraries

0.0.6 / 2010-06-22

	Added static middleware usage example

	Added support for regular expressions as paths for router

	Added util.merge()

	Increased performance of static by ~ 200 rps

	Renamed the rest middleware to router

	Changed rest api to accept a callback function

	Removed router middleware

	Removed proto.js, only Object#forEach() remains

0.0.5 / 2010-06-21

	Added Server#use() which contains the Layer normalization logic

	Added documentation for several middleware

	Added several new examples

	Added less middleware

	Added repl middleware

	Added vhost middleware

	Added flash middleware

	Added cookie middleware

	Added session middleware

	Added utils.htmlEscape()

	Added utils.base64Decode()

	Added utils.base64Encode()

	Added utils.uid()

	Added bin/connect app path and –config path support for .js suffix, although optional. Closes #26

	Moved mime code to utils.mime, ex utils.mime.types, and utils.mime.type()

	Renamed req.redirect() to res.redirect(). Closes #29

	Fixed sass 404 on ENOENT

	Fixed +new Date duplication. Closes #24

0.0.4 / 2010-06-16

	Added workerPidfile() to bin/connect

	Added –workers support to bin/connect stop and status commands

	Added redirect middleware

	Added better –config support to bin/connect. All flags can be utilized

	Added auto-detection of ./config.js

	Added config example

	Added net.Server support to bin/connect

	Writing worker pids relative to env.pidfile

	s/parseQuery/parse/g

	Fixed npm support

0.0.3 / 2010-06-16

	Fixed node dependency in package.json, now “>= 0.1.98-0” to support HEAD

0.0.2 / 2010-06-15

	Added -V, --version to bin/connect

	Added utils.parseCookie()

	Added utils.serializeCookie()

	Added utils.toBoolean()

	Added sass middleware

	Added cookie middleware

	Added format middleware

	Added lint middleware

	Added rest middleware

	Added ./package.json (npm install connect)

	Added handleError() support

	Added process.connectEnv

	Added custom log format support to log middleware

	Added arbitrary env variable support to bin/connect (ext: –logFormat ”:method :url”)

	Added -w, –workers to bin/connect

	Added bin/connect support for –user NAME and –group NAME

	Fixed url re-writing support

0.0.1 / 2010-06-03

	Initial release

 Expresso

Expresso

TDD framework for nodejs [http://nodejs.org].

Features

	light-weight

	intuitive async support

	intuitive test runner executable

	test coverage support and reporting

	uses the assert module

	assert.eql() alias of assert.deepEqual()

	assert.response() http response utility

	assert.includes()

	assert.type()

	assert.isNull()

	assert.isUndefined()

	assert.isNotNull()

	assert.isDefined()

	assert.match()

	assert.length()

Installation

To install both expresso and node-jscoverage run:

$ make install

To install expresso alone (no build required) run:

$ make install-expresso

Install via npm:

$ npm install expresso

License

(The MIT License)

Copyright (c) 2010 TJ Holowaychuk <

tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 0.7.2 / 2010-12-29

0.7.2 / 2010-12-29

	Fixed problem with listen() sometimes firing on the same tick [guillermo]

0.7.1 / 2010-12-28

	Fixed assert.request() client logic into an issue() function, fired upon the listen() callback if the server doesn’t have an assigned fd. [guillermo]

	Removed --watch

0.7.0 / 2010-11-19

	Removed assert from test function signature
Just use require('assert') :) this will make integration
with libraries like should [http://github.com/visionmedia/should] cleaner.

0.6.4 / 2010-11-02

	Added regexp support to assert.response() headers

	Removed waitForExit code, causing issues

0.6.3 / 2010-11-02

	Added assert.response() body RegExp support

	Fixed issue with –serial not executing files sequentially. Closes #42

	Fixed hang when modules use setInterval - monitor running tests & force the process to quit after all have completed + timeout [Steve Mason]

0.6.2 / 2010-09-17

	Added node-jsocoverage to package.json (aka will respect npm’s binroot)

	Added -t, –timeout MS option, defaulting to 2000 ms

	Added -s, –serial

	PREFIX clobberable

	Fixed assert.response() for latest node

	Fixed cov reporting from exploding on empty files

0.6.2 / 2010-08-03

	Added assert.type()

	Renamed assert.isNotUndefined() to assert.isDefined()

	Fixed assert.includes() param ordering

0.6.0 / 2010-07-31

	Added docs/api.html

	Added -w, –watch

	Added Array support to assert.includes()

	Added; outputting exceptions immediately. Closes #19

	Fixed assert.includes() param ordering

	Fixed assert.length() param ordering

	Fixed jscoverage links

0.5.0 / 2010-07-16

	Added support for async exports

	Added timeout support to assert.response(). Closes #3

	Added 4th arg callback support to assert.response()

	Added assert.length()

	Added assert.match()

	Added assert.isUndefined()

	Added assert.isNull()

	Added assert.includes()

	Added growlnotify support via -g, –growl

	Added -o, –only TESTS. Ex: –only “test foo()” –only “test foo(), test bar()”

	Removed profanity

0.4.0 / 2010-07-09

	Added reporting source coverage (respects –boring for color haters)

	Added callback to assert.response(). Closes #12

	Fixed; putting exceptions to stderr. Closes #13

0.3.1 / 2010-06-28

	Faster assert.response()

0.3.0 / 2010-06-28

	Added -p, –port NUM flags

	Added assert.response(). Closes #11

0.2.1 / 2010-06-25

	Fixed issue with reporting object assertions

0.2.0 / 2010-06-21

	Added make uninstall

	Added better readdir() failure message

	Fixed make install for kiwi

0.1.0 / 2010-06-15

	Added better usage docs via –help

	Added better conditional color support

	Added pre exit assertion support

0.0.3 / 2010-06-02

	Added more room for filenames in test coverage

	Added boring output support via –boring (suppress colored output)

	Fixed async failure exit status

0.0.2 / 2010-05-30

	Fixed exit status for CI support

0.0.1 / 2010-05-30

	Initial release

 node-jscoverage

node-jscoverage

JScoverage [http://siliconforks.com/jscoverage/] for node.

Installation

$./configure && make && make install

 Features

 Expresso [http://github.com/visionmedia/expresso] is a JavaScript TDD [http://en.wikipedia.org/wiki/Test-driven_development] framework written for nodejs [http://nodejs.org]. Expresso is extremely fast, and is packed with features such as additional assertion methods, code coverage reporting, CI support, and more.

Features

	light-weight

	intuitive async support

	intuitive test runner executable

	test coverage support and reporting via node-jscoverage [http://github.com/visionmedia/node-jscoverage]

	uses and extends the core assert module

	assert.eql() alias of assert.deepEqual()

	assert.response() http response utility

	assert.includes()

	assert.isNull()

	assert.isUndefined()

	assert.isNotNull()

	assert.isDefined()

	assert.match()

	assert.length()

Installation

To install both expresso and node-jscoverage run
the command below, which will first compile node-jscoverage:

$ make install

To install expresso alone without coverage reporting run:

$ make install-expresso

Install via npm:

$ npm install expresso

Examples

To define tests we simply export several functions:

exports['test String#length'] = function(){
 assert.equal(6, 'foobar'.length);
};

Alternatively for large numbers of tests you may want to
export your own object containing the tests, however this
is essentially the as above:

module.exports = {
 'test String#length': function(){
 assert.equal(6, 'foobar'.length);
 }
};

If you prefer not to use quoted keys:

exports.testsStringLength = function(){
 assert.equal(6, 'foobar'.length);
};

The argument passed to each callback is beforeExit,
which is typically used to assert that callbacks have been
invoked.

exports.testAsync = function(beforeExit){
 var n = 0;
 setTimeout(function(){
 ++n;
 assert.ok(true);
 }, 200);
 setTimeout(function(){
 ++n;
 assert.ok(true);
 }, 200);
 beforeExit(function(){
 assert.equal(2, n, 'Ensure both timeouts are called');
 });
};

Assert Utilities

assert.isNull(val[, msg])

Asserts that the given val is null.

assert.isNull(null);

assert.isNotNull(val[, msg])

Asserts that the given val is not null.

assert.isNotNull(undefined);
assert.isNotNull(false);

assert.isUndefined(val[, msg])

Asserts that the given val is undefined.

assert.isUndefined(undefined);

assert.isDefined(val[, msg])

Asserts that the given val is not undefined.

assert.isDefined(null);
assert.isDefined(false);

assert.match(str, regexp[, msg])

Asserts that the given str matches regexp.

assert.match('foobar', /^foo(bar)?/);
assert.match('foo', /^foo(bar)?/);

assert.length(val, n[, msg])

Assert that the given val has a length of n.

assert.length([1,2,3], 3);
assert.length('foo', 3);

assert.type(obj, type[, msg])

Assert that the given obj is typeof type.

assert.type(3, 'number');

assert.eql(a, b[, msg])

Assert that object b is equal to object a. This is an
alias for the core assert.deepEqual() method which does complex
comparisons, opposed to assert.equal() which uses ==.

assert.eql('foo', 'foo');
assert.eql([1,2], [1,2]);
assert.eql({ foo: 'bar' }, { foo: 'bar' });

assert.includes(obj, val[, msg])

Assert that obj is within val. This method supports _Array_s
and _Strings_s.

assert.includes([1,2,3], 3);
assert.includes('foobar', 'foo');
assert.includes('foobar', 'bar');

assert.response(server, req, res|fn[, msg|fn])

Performs assertions on the given server, which should not call
listen(), as this is handled internally by expresso and the server
is killed after all responses have completed. This method works with
any http.Server instance, so Connect and Express servers will work
as well.

The req object may contain:

	url request url

	timeout timeout in milliseconds

	method HTTP method

	data request body

	headers headers object

The res object may be a callback function which
receives the response for assertions, or an object
which is then used to perform several assertions
on the response with the following properties:

	body assert response body (regexp or string)

	status assert response status code

	header assert that all given headers match (unspecified are ignored, use a regexp or string)

When providing res you may then also pass a callback function
as the fourth argument for additional assertions.

Below are some examples:

assert.response(server, {
 url: '/', timeout: 500
}, {
 body: 'foobar'
});

assert.response(server, {
 url: '/',
 method: 'GET'
},{
 body: '{"name":"tj"}',
 status: 200,
 headers: {
 'Content-Type': 'application/json; charset=utf8',
 'X-Foo': 'bar'
 }
});

assert.response(server, {
 url: '/foo',
 method: 'POST',
 data: 'bar baz'
},{
 body: '/foo bar baz',
 status: 200
}, 'Test POST');

assert.response(server, {
 url: '/foo',
 method: 'POST',
 data: 'bar baz'
},{
 body: '/foo bar baz',
 status: 200
}, function(res){
 // All done, do some more tests if needed
});

assert.response(server, {
 url: '/'
}, function(res){
 assert.ok(res.body.indexOf('tj') >= 0, 'Test assert.response() callback');
});

expresso(1)

To run a single test suite (file) run:

$ expresso test/a.test.js

To run several suites we may simply append another:

$ expresso test/a.test.js test/b.test.js

We can also pass a whitelist of tests to run within all suites:

$ expresso --only "foo()" --only "bar()"

Or several with one call:

$ expresso --only "foo(), bar()"

Globbing is of course possible as well:

$ expresso test/*

When expresso is called without any files, _test/*_ is the default,
so the following is equivalent to the command above:

$ expresso

If you wish to unshift a path to require.paths before
running tests, you may use the -I or --include flag.

$ expresso --include lib test/*

The previous example is typically what I would recommend, since expresso
supports test coverage via node-jscoverage [http://github.com/visionmedia/node-jscoverage] (bundled with expresso),
so you will need to expose an instrumented version of you library.

To instrument your library, simply run node-jscoverage [http://github.com/visionmedia/node-jscoverage],
passing the src and dest directories:

$ node-jscoverage lib lib-cov

Now we can run our tests again, using the lib-cov directory that has been
instrumented with coverage statements:

$ expresso -I lib-cov test/*

The output will look similar to below, depending on your test coverage of course :)

[image: node coverage]

To make this process easier expresso has the -c or –cov which essentially
does the same as the two commands above. The following two commands will
run the same tests, however one will auto-instrument, and unshift lib-cov,
and the other will run tests normally:

$ expresso -I lib test/*
$ expresso -I lib --cov test/*

Currently coverage is bound to the lib directory, however in the
future --cov will most likely accept a path.

Async Exports

Sometimes it is useful to postpone running of tests until a callback or event has fired, currently the exports.foo = function(){}; syntax is supported for this:

setTimeout(function(){
 exports['test async exports'] = function(){
 assert.ok('wahoo');
 };
}, 100);

 {title}

{title}

Just an example view rendered with markdown.

 Development Dependencies

Development Dependencies

Express development dependencies are stored within the ./support directory. To
update them execute:

$ git submodule update --init

Running Tests

Express uses the Expresso [http://github.com/visionmedia/expresso] TDD
framework to write and run elegant test suites extremely fast. To run all test suites
simply execute:

$ make test

To target specific suites we may specify the files via:

$ make test TESTS=test/view.test.js

To check test coverage run:

$ make test-cov

Contributions

To accept a contribution, you should follow these guidelines:

	All tests must pass

	Your alterations or additions must include tests

	Your commit(s) should be focused, do not commit once for several changes

	Do not alter release information such as the version, or History.md

	Indents are 2 spaces.

Documentation

To contribute documentation edit the markdown files in ./docs, however
do not run make docs, as they will be re-built and published with each release.

 Features

 var app = express.createServer();

app.get('/', function(req, res){
 res.send('Hello World');
});

app.listen(3000);

Features

	Robust routing

	Redirection helpers

	Dynamic view helpers

	Application level view options

	Content negotiation

	Application mounting

	Focus on high performance

	View rendering and partials support

	Environment based configuration

	Session based flash notifications

	Built on Connect [http://github.com/senchalabs/connect]

	Executable for generating applications quickly

	High test coverage

Contributors

The following are the major contributors of Express (in no specific order).

	TJ Holowaychuk (visionmedia [http://github.com/visionmedia])

	Ciaran Jessup (ciaranj [http://github.com/ciaranj])

	Aaron Heckmann (aheckmann [http://github.com/aheckmann])

	Guillermo Rauch (guille [http://github.com/guille])

More Information

	Google Group [http://groups.google.com/group/express-js] for discussion

	Follow tjholowaychuk [http://twitter.com/tjholowaychuk] on twitter for updates

	View the Connect [http://github.com/senchalabs/connect] repo for middleware usage

	View the Connect Wiki [http://wiki.github.com/senchalabs/connect/] for contrib middleware

	View the examples [http://github.com/visionmedia/express/tree/master/examples/]

	View the source [http://github.com/visionmedia/express]

	View the contrib guide

 Synopsis

Synopsis

express [options] [PATH]

Description

The express executable generates apps at the given PATH or the
current working directory. Although Express is not bound to a specific
application structure, this executable creates a maintainable base app.

Options

 -s, --sessions Add session support
 -t, --template ENGINE Add template ENGINE support (jade|ejs). Defaults to jade
 -c, --css ENGINE Add stylesheet ENGINE support (less|sass|stylus). Defaults to plain css
 -v, --version Output framework version
 -h, --help Output help information

 Installation

Installation

$ npm install express

Creating A Server

To create an instance of the express.HTTPServer, simply invoke the createServer() method. With our instance app we can then define routes based on the HTTP verbs, in this example app.get().

var app = require('express').createServer();

app.get('/', function(req, res){
 res.send('hello world');
});

app.listen(3000);

Creating An HTTPS Server

To initialize a express.HTTPSServer we do the same as above, however we
pass an options object, accepting key, cert and the others mentioned in node’s https documentation [http://nodejs.org/docs/v0.3.7/api/https.html#https.createServer].

 var app = require('express').createServer({ key: ... });

Configuration

Express supports arbitrary environments, such as production and development. Developers
can use the configure() method to setup needs required by the current environment. When
configure() is called without an environment name it will be run in every environment
prior to the environment specific callback.

In the example below we only dumpExceptions, and respond with exception stack traces
in development mode, however for both environments we utilize methodOverride and bodyParser.
Note the use of app.router, which can (optionally) be used to mount the application routes,
otherwise the first call to app.get(), app.post(), etc will mount the routes.

app.configure(function(){
 app.use(express.methodOverride());
 app.use(express.bodyParser());
 app.use(app.router);
});

app.configure('development', function(){
 app.use(express.static(__dirname + '/public'));
 app.use(express.errorHandler({ dumpExceptions: true, showStack: true }));
});

app.configure('production', function(){
 var oneYear = 31557600000;
 app.use(express.static({ root: __dirname + '/public', maxAge: oneYear }));
 app.use(express.errorHandler());
});

For internal and arbitrary settings Express provides the set(key[, val]), enable(key), disable(key) methods:

 app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('views');
 // => "/absolute/path/to/views"

 app.enable('some feature');
 // same as app.set('some feature', true);

 app.disable('some feature');
 // same as app.set('some feature', false);

 app.enabled('some feature')
 // => false
 });

To alter the environment we can set the NODE_ENV environment variable, for example:

$ NODE_ENV=production node app.js

This is very important, as many caching mechanisms are only enabled when in production.

Settings

Express supports the following settings out of the box:

	home Application base path used for res.redirect() and transparently handling mounted apps.

	views Root views directory defaulting to CWD/views

	view engine Default view engine name for views rendered without extensions

	view options An object specifying global view options

Routing

Express utilizes the HTTP verbs to provide a meaningful, expressive routing API.
For example we may want to render a user’s account for the path /user/12, this
can be done by defining the route below. The values associated to the named placeholders
are available as req.params.

app.get('/user/:id', function(req, res){
 res.send('user ' + req.params.id);
});

A route is simple a string which is compiled to a RegExp internally. For example
when /user/:id is compiled, a simplified version of the regexp may look similar to:

\/user\/([^\/]+)\/?

Regular expression literals may also be passed for complex uses. Since capture
groups with literal RegExp‘s are anonymous we can access them directly req.params. So our first capture group would be req.params[0] and the second would follow as req.params[1].

app.get(/^\/users?(?:\/(\d+)(?:\.\.(\d+))?)?/, function(req, res){
 res.send(req.params);
});

Curl requests against the previously defined route:

 $ curl http://dev:3000/user
 [null,null]
 $ curl http://dev:3000/users
 [null,null]
 $ curl http://dev:3000/users/1
 ["1",null]
 $ curl http://dev:3000/users/1..15
 ["1","15"]

Below are some route examples, and the associated paths that they
may consume:

 "/user/:id"
 /user/12

 "/users/:id?"
 /users/5
 /users

 "/files/*"
 /files/jquery.js
 /files/javascripts/jquery.js

 "/file/*.*"
 /files/jquery.js
 /files/javascripts/jquery.js

 "/user/:id/:operation?"
 /user/1
 /user/1/edit

 "/products.:format"
 /products.json
 /products.xml

 "/products.:format?"
 /products.json
 /products.xml
 /products

 "/user/:id.:format?"
 /user/12
 /user/12.json

For example we can POST some json, and echo the json back using the bodyParser middleware which will parse json request bodies (as well as others), and place the result in req.body:

var express = require('express')
 , app = express.createServer();

app.use(express.bodyParser());

app.post('/', function(req, res){
 res.send(req.body);
});

app.listen(3000);

Typically we may use a “dumb” placeholder such as “/user/:id” which has no restrictions, however say for example we are limiting a user id to digits, we may use ‘/user/:id(\d+)’ which will not match unless the placeholder value contains only digits.

Passing Route Control

We may pass control to the next matching route, by calling the third argument,
the next() function. When a match cannot be made, control is passed back to Connect,
and middleware continue to be invoked in the order that they are added via use(). The same is true for several routes which have the same path defined, they will simply be executed in order until one does not call next() and decides to respond.

app.get('/users/:id?', function(req, res, next){
 var id = req.params.id;
 if (id) {
 // do something
 } else {
 next();
 }
});

app.get('/users', function(req, res){
 // do something else
});

The app.all() method is useful for applying the same logic for all HTTP verbs in a single call. Below we use this to load a user from our fake database, and assign it to req.user.

var express = require('express')
 , app = express.createServer();

var users = [{ name: 'tj' }];

app.all('/user/:id/:op?', function(req, res, next){
 req.user = users[req.params.id];
 if (req.user) {
 next();
 } else {
 next(new Error('cannot find user ' + req.params.id));
 }
});

app.get('/user/:id', function(req, res){
 res.send('viewing ' + req.user.name);
});

app.get('/user/:id/edit', function(req, res){
 res.send('editing ' + req.user.name);
});

app.put('/user/:id', function(req, res){
 res.send('updating ' + req.user.name);
});

app.get('*', function(req, res){
 res.send('what???', 404);
});

app.listen(3000);

Middleware

Middleware via Connect [http://github.com/senchalabs/connect] can be
passed to express.createServer() as you would with a regular Connect server. For example:

 var express = require('express');

var app = express.createServer(
 express.logger()
 , express.bodyParser()
);

Alternatively we can use() them which is useful when adding middleware within configure() blocks, in a progressive manor.

app.use(express.logger({ format: ':method :uri' }));

Typically with connect middleware you would require(‘connect’) like so:

var connect = require('connect');
app.use(connect.logger());
app.use(connect.bodyParser());

This is somewhat annoying, so express re-exports these middleware properties, however they are identical:

app.use(express.logger());
app.use(express.bodyParser());

Route Middleware

Routes may utilize route-specific middleware by passing one or more additional callbacks (or arrays) to the method. This feature is extremely useful for restricting access, loading data used by the route etc.

Typically async data retrieval might look similar to below, where we take the :id parameter, and attempt loading a user.

app.get('/user/:id', function(req, res, next){
 loadUser(req.params.id, function(err, user){
 if (err) return next(err);
 res.send('Viewing user ' + user.name);
 });
});

To keep things DRY and to increase readability we can apply this logic within a middleware. As you can see below, abstracting this logic into middleware allows us to reuse it, and clean up our route at the same time.

function loadUser(req, res, next) {
 // You would fetch your user from the db
 var user = users[req.params.id];
 if (user) {
 req.user = user;
 next();
 } else {
 next(new Error('Failed to load user ' + req.params.id));
 }
}

app.get('/user/:id', loadUser, function(req, res){
 res.send('Viewing user ' + req.user.name);
});

Multiple route middleware can be applied, and will be executed sequentially to apply further logic such as restricting access to a user account. In the example below only the authenticated user may edit his/her account.

function andRestrictToSelf(req, res, next) {
 req.authenticatedUser.id == req.user.id
 ? next()
 : next(new Error('Unauthorized'));
}

app.get('/user/:id/edit', loadUser, andRestrictToSelf, function(req, res){
 res.send('Editing user ' + req.user.name);
});

Keeping in mind that middleware are simply functions, we can define function that returns the middleware in order to create a more expressive and flexible solution as shown below.

function andRestrictTo(role) {
 return function(req, res, next) {
 req.authenticatedUser.role == role
 ? next()
 : next(new Error('Unauthorized'));
 }
}

app.del('/user/:id', loadUser, andRestrictTo('admin'), function(req, res){
 res.send('Deleted user ' + req.user.name);
});

Commonly used “stacks” of middleware can be passed as an array (applied recursively), which can be mixed and matched to any degree.

var a = [middleware1, middleware2]
 , b = [middleware3, middleware4]
 , all = [a, b];

app.get('/foo', a, function(){});
app.get('/bar', a, function(){});

app.get('/', a, middleware3, middleware4, function(){});
app.get('/', a, b, function(){});
app.get('/', all, function(){});

For this example in full, view the route middleware example [http://github.com/visionmedia/express/blob/master/examples/route-middleware/app.js] in the repository.

HTTP Methods

We have seen app.get() a few times, however Express also exposes other familiar HTTP verbs in the same manor, such as app.post(), app.del(), etc.

A common example for POST usage, is when “submitting” a form. Below we simply set our form method to “post” in our html, and control will be given to the route we have defined below it.

 <form method="post" action="/">
 <input type="text" name="user[name]" />
 <input type="text" name="user[email]" />
 <input type="submit" value="Submit" />
 </form>

By default Express does not know what to do with this request body, so we should add the bodyParser middleware, which will parse application/x-www-form-urlencoded and application/json request bodies and place the variables in req.body. We can do this by “using” the middleware as shown below:

app.use(express.bodyParser());

Our route below will now have access to the req.body.user object which will contain the name and email properties when defined.

app.post('/', function(req, res){
 console.log(req.body.user);
 res.redirect('back');
});

When using methods such as PUT with a form, we can utilize a hidden input named _method, which can be used to alter the HTTP method. To do so we first need the methodOverride middleware, which should be placed below bodyParser so that it can utilize it’s req.body containing the form values.

app.use(express.bodyParser());
app.use(express.methodOverride());

The reason that these are not always defaults, is simply because these are not required for Express to be fully functional. Depending on the needs of your application, you may not need these at all, your methods such as PUT and DELETE can still be accessed by clients which can use them directly, although methodOverride provides a great solution for forms. Below shows what the usage of PUT might look like:

<form method="post" action="/">
 <input type="hidden" name="_method" value="put" />
 <input type="text" name="user[name]" />
 <input type="text" name="user[email]" />
 <input type="submit" value="Submit" />
</form>

app.put('/', function(){
 console.log(req.body.user);
 res.redirect('back');
});

Error Handling

Express provides the app.error() method which receives exceptions thrown within a route,
or passed to next(err). Below is an example which serves different pages based on our
ad-hoc NotFound exception:

function NotFound(msg){
 this.name = 'NotFound';
 Error.call(this, msg);
 Error.captureStackTrace(this, arguments.callee);
}

NotFound.protoype.__proto__ = Error.prototype;

app.get('/404', function(req, res){
 throw new NotFound;
});

app.get('/500', function(req, res){
 throw new Error('keyboard cat!');
});

We can call app.error() several times as shown below.
Here we check for an instanceof NotFound and show the
404 page, or we pass on to the next error handler.

Note that these handlers can be defined anywhere, as they
will be placed below the route handlers on listen(). This
allows for definition within configure() blocks so we can
handle exceptions in different ways based on the environment.

app.error(function(err, req, res, next){
 if (err instanceof NotFound) {
 res.render('404.jade');
 } else {
 next(err);
 }
});

Here we assume all errors as 500 for the simplicity of
this demo, however you can choose whatever you like. For example when node performs filesystem syscalls, you may receive an error object with the error.code of ENOENT, meaning “no such file or directory”, we can utilize this in our error handling and display a page specific to this if desired.

app.error(function(err, req, res){
 res.render('500.jade', {
 error: err
 });
});

Our apps could also utilize the Connect errorHandler middleware
to report on exceptions. For example if we wish to output exceptions
in “development” mode to stderr we can use:

app.use(express.errorHandler({ dumpExceptions: true }));

Also during development we may want fancy html pages to show exceptions
that are passed or thrown, so we can set showStack to true:

app.use(express.errorHandler({ showStack: true, dumpExceptions: true }));

The errorHandler middleware also responds with json if Accept: application/json
is present, which is useful for developing apps that rely heavily on client-side JavaScript.

Route Param Pre-conditions

Route param pre-conditions can drastically improve the readability of your application, through implicit loading of data, and validation of request urls. For example if you are constantly fetching common data for several routes, such as loading a user for /user/:id, we might typically do something like below:

app.get('/user/:userId', function(req, res, next){
 User.get(req.params.userId, function(err, user){
 if (err) return next(err);
 res.send('user ' + user.name);
 });
});

With preconditions our params can be mapped to callbacks which may perform validation, coercion, or even loading data from a database. Below we invoke app.param() with the parameter name we wish to map to some middleware, as you can see we receive the id argument which contains the placeholder value. Using this we load the user and perform error handling as usual, and simple call next() to pass control to the next precondition or route handler.

app.param('userId', function(req, res, next, id){
 User.get(id, function(err, user){
 if (err) return next(err);
 if (!user) return next(new Error('failed to find user'));
 req.user = user;
 next();
 });
});

Doing so, as mentioned drastically improves our route readability, and allows us to easily share this logic throughout our application:

app.get('/user/:userId', function(req, res){
 res.send('user ' + req.user.name);
});

For simple cases such as route placeholder validation and coercion we can simple pass a callback which has an arity of 1 (accepts one argument). Any errors thrown will be passed to next(err).

app.param('number', function(n){ return parseInt(n, 10); });

We may also apply the same callback to several placeholders, for example a route GET /commits/:from-:to are both numbers, so we may define them as an array:

app.param(['from', 'to'], function(n){ return parseInt(n, 10); });

View Rendering

View filenames take the form “<

name>

.<

engine>

”, where <

engine>

 is the name
of the module that will be required. For example the view layout.ejs will
tell the view system to require(‘ejs’), the module being loaded must export the method exports.compile(str, options), and return a Function to comply with Express. To alter this behaviour
app.register() can be used to map engines to file extensions, so that for example “foo.html” can be rendered by ejs.

Below is an example using Jade [http://github.com/visionmedia/jade] to render index.html,
and since we do not use layout: false the rendered contents of index.jade will be passed as
the body local variable in layout.jade.

app.get('/', function(req, res){
 res.render('index.jade', { title: 'My Site' });
});

The new view engine setting allows us to specify our default template engine,
so for example when using jade we could set:

app.set('view engine', 'jade');

Allowing us to render with:

res.render('index');

vs:

res.render('index.jade');

When view engine is set, extensions are entirely optional, however we can still
mix and match template engines:

res.render('another-page.ejs');

Express also provides the view options setting, which is applied each time a view is rendered, so for example if you rarely use layouts you may set:

app.set('view options', {
 layout: false
});

Which can then be overridden within the res.render() call if need be:

res.render('myview.ejs', { layout: true });

When an alternate layout is required, we may also specify a path. For example if we have view engine set to jade and a file named ./views/mylayout.jade we can simply pass:

res.render('page', { layout: 'mylayout' });

Otherwise we must specify the extension:

res.render('page', { layout: 'mylayout.jade' });

These paths may also be absolute:

res.render('page', { layout: __dirname + '/../../mylayout.jade' });

A good example of this is specifying custom ejs opening and closing tags:

app.set('view options', {
 open: '{{',
 close: '}}'
});

View Partials

The Express view system has built-in support for partials and collections, which are “mini” views representing a document fragment. For example rather than iterating
in a view to display comments, we would use a partial with collection support:

partial('comment', { collection: comments });

If no other options are desired, we can omit the object and simply pass our array, which is equivalent to above:

partial('comment', comments);

When using the partial collection support a few “magic” variables are provided
for free:

	firstInCollection true if this is the first object

	indexInCollection index of the object in the collection

	lastInCollection true if this is the last object

	collectionLength length of the collection

Local variables passed (or generated) take precedence, however locals passed to the parent view are available in the child view as well. So for example if we were to render a blog post with partial(‘blog/post’, post) it would generate the post local, but the view calling this function had the local user, it would be available to the blog/post view as well.

For documentation on altering the object name view res.partial() [http://expressjs.com/guide.html#res-partial-view-options-].

NOTE: be careful about when you use partial collections, as rendering an array with a length of 100 means we have to render 100 views. For simple collections you may inline the iteration instead of using partial collection support to decrease overhead.

View Lookup

View lookup is performed relative to the parent view, for example if we had a page view named views/user/list.jade, and within that view we did partial(‘edit’) it would attempt to load views/user/edit.jade, whereas partial(‘../messages’) would load views/messages.jade.

The view system also allows for index templates, allowing you to have a directory of the same name. For example within a route we may have res.render(‘users’) either views/users.jade, or views/users/index.jade.

When utilizing index views as shown above, we may reference views/users/index.jade from a view in the same directory by partial(‘users’), and the view system will try ../users/index, preventing us from needing to call partial(‘index’).

Template Engines

Below are a few template engines commonly used with Express:

	Jade [http://jade-lang.com] haml.js successor

	EJS [http://github.com/visionmedia/ejs] Embedded JavaScript

	CoffeeKup [http://github.com/mauricemach/coffeekup] CoffeeScript based templating

	jQuery Templates [https://github.com/kof/node-jqtpl] for node

Session Support

Sessions support can be added by using Connect’s session middleware. To do so we also need the cookieParser middleware place above it, which will parse and populate cookie data to req.cookies.

app.use(express.cookieParser());
app.use(express.session({ secret: "keyboard cat" }));

By default the session middleware uses the memory store bundled with Connect, however many implementations exist. For example connect-redis [http://github.com/visionmedia/connect-redis] supplies a Redis [http://code.google.com/p/redis/] session store and can be used as shown below:

var RedisStore = require('connect-redis');
app.use(express.cookieParser());
app.use(express.session({ secret: "keyboard cat", store: new RedisStore }));

Now the req.session and req.sessionStore properties will be accessible to all routes and subsequent middleware. Properties on req.session are automatically saved on a response, so for example if we wish to shopping cart data:

var RedisStore = require('connect-redis');
app.use(express.bodyParser());
app.use(express.cookieParser());
app.use(express.session({ secret: "keyboard cat", store: new RedisStore }));

app.post('/add-to-cart', function(req, res){
 // Perhaps we posted several items with a form
 // (use the bodyParser() middleware for this)
 var items = req.body.items;
 req.session.items = items;
 res.redirect('back');
});

app.get('/add-to-cart', function(req, res){
 // When redirected back to GET /add-to-cart
 // we could check req.session.items && req.session.items.length
 // to print out a message
 if (req.session.items && req.session.items.length) {
 req.flash('info', 'You have %s items in your cart', req.session.items.length);
 }
 res.render('shopping-cart');
});

The req.session object also has methods such as Session#touch(), Session#destroy(), Session#regenerate() among others to maintain and manipulate sessions. For more information view the Connect Session [http://senchalabs.github.com/connect/middleware-session.html] documentation.

Migration Guide

Express 1.x developers may reference the Migration Guide to get up to speed on how to upgrade your application to work with Express 2.x, Connect 1.x, and Node 0.4.x.

req.header(key[, defaultValue])

Get the case-insensitive request header key, with optional defaultValue:

req.header('Host');
req.header('host');
req.header('Accept', '*/*');

The Referrer and Referer header fields are special-cased, either will work:

// sent Referrer: http://google.com

req.header('Referer');
// => "http://google.com"

req.header('Referrer');
// => "http://google.com"

req.accepts(type)

Check if the Accept header is present, and includes the given type.

When the Accept header is not present true is returned. Otherwise
the given type is matched by an exact match, and then subtypes. You
may pass the subtype such as “html” which is then converted internally
to “text/html” using the mime lookup table.

// Accept: text/html
req.accepts('html');
// => true

// Accept: text/*; application/json
req.accepts('html');
req.accepts('text/html');
req.accepts('text/plain');
req.accepts('application/json');
// => true

req.accepts('image/png');
req.accepts('png');
// => false

req.is(type)

Check if the incoming request contains the Content-Type
header field, and it contains the give mime type.

 // With Content-Type: text/html; charset=utf-8
 req.is('html');
 req.is('text/html');
 // => true

 // When Content-Type is application/json
 req.is('json');
 req.is('application/json');
 // => true

 req.is('html');
 // => false

Ad-hoc callbacks can also be registered with Express, to perform
assertions again the request, for example if we need an expressive
way to check if our incoming request is an image, we can register “an image”
callback:

 app.is('an image', function(req){
 return 0 == req.headers['content-type'].indexOf('image');
 });

Now within our route callbacks, we can use to to assert content types
such as “image/jpeg”, “image/png”, etc.

 app.post('/image/upload', function(req, res, next){
 if (req.is('an image')) {
 // do something
 } else {
 next();
 }
 });

Keep in mind this method is not limited to checking Content-Type, you
can perform any request assertion you wish.

Wildcard matches can also be made, simplifying our example above for “an image”, by asserting the subtype only:

req.is('image/*');

We may also assert the type as shown below, which would return true for “application/json”, and “text/json”.

req.is('*/json');

req.param(name[, default])

Return the value of param name when present or default.

	Checks route params (req.params), ex: /user/:id

	Checks query string params (req.query), ex: ?id=12

	Checks urlencoded body params (req.body), ex: id=12

To utilize urlencoded request bodies, req.body
should be an object. This can be done by using
the _express.bodyParser middleware.

req.flash(type[, msg])

Queue flash msg of the given type.

req.flash('info', 'email sent');
req.flash('error', 'email delivery failed');
req.flash('info', 'email re-sent');
// => 2

req.flash('info');
// => ['email sent', 'email re-sent']

req.flash('info');
// => []

req.flash();
// => { error: ['email delivery failed'], info: [] }

Flash notification message may also utilize formatters, by default only the %s string formatter is available:

req.flash('info', 'email delivery to _%s_ from _%s_ failed.', toUser, fromUser);

req.isXMLHttpRequest

Also aliased as req.xhr, this getter checks the X-Requested-With header
to see if it was issued by an XMLHttpRequest:

req.xhr
req.isXMLHttpRequest

res.header(key[, val])

Get or set the response header key.

res.header('Content-Length');
// => undefined

res.header('Content-Length', 123);
// => 123

res.header('Content-Length');
// => 123

res.contentType(type)

Sets the Content-Type response header to the given type.

 var filename = 'path/to/image.png';
 res.contentType(filename);
 // Content-Type is now "image/png"

res.attachment([filename])

Sets the Content-Disposition response header to “attachment”, with optional filename.

 res.attachment('path/to/my/image.png');

res.sendfile(path[, options[, callback]])

Used by res.download() to transfer an arbitrary file.

res.sendfile('path/to/my.file');

This method accepts an optional callback which is called when
an error occurs, or when the transfer is complete. By default failures call next(err), however when a callback is supplied you must do this explicitly, or act on the error.

res.sendfile(path, function(err){
 if (err) {
 next(err);
 } else {
 console.log('transferred %s', path);
 }
});

Options may also be passed to the internal fs.createReadStream() call, for example altering the bufferSize:

res.sendfile(path, { bufferSize: 1024 }, function(err){
 // handle
});

res.download(file[, filename[, callback]])

Transfer the given file as an attachment with optional alternative filename.

res.download('path/to/image.png');
res.download('path/to/image.png', 'foo.png');

This is equivalent to:

res.attachment(file);
res.sendfile(file);

An optional callback may be supplied as either the second or third argument, which is passed to res.sendfile():

res.download(path, 'expenses.doc', function(err){
 // handle
});

res.send(body|status[, headers|status[, status]])

The res.send() method is a high level response utility allowing you to pass
objects to respond with json, strings for html, Buffer instances, or numbers representing the status code. The following are all valid uses:

 res.send(); // 204
 res.send(new Buffer('wahoo'));
 res.send({ some: 'json' });
 res.send('<p>some html</p>');
 res.send('Sorry, cant find that', 404);
 res.send('text', { 'Content-Type': 'text/plain' }, 201);
 res.send(404);

By default the Content-Type response header is set, however if explicitly
assigned through res.send() or previously with res.header() or res.contentType()
it will not be set again.

Note that this method _end()_s the response, so you will want to use node’s res.write() for multiple writes or streaming.

res.redirect(url[, status])

Redirect to the given url with a default response status of 302.

res.redirect('/', 301);
res.redirect('/account');
res.redirect('http://google.com');
res.redirect('home');
res.redirect('back');

Express supports “redirect mapping”, which by default provides home, and back.
The back map checks the Referrer and Referer headers, while home utilizes
the “home” setting and defaults to “/”.

res.cookie(name, val[, options])

Sets the given cookie name to val, with options httpOnly, secure, expires etc.

// "Remember me" for 15 minutes
res.cookie('rememberme', 'yes', { expires: new Date(Date.now() + 900000), httpOnly: true });

The maxAge property may be used to set expires relative to Date.now() in milliseconds, so our example above can now become:

res.cookie('rememberme', 'yes', { maxAge: 900000 });

To parse incoming Cookie headers, use the cookieDecoder middleware, which provides the req.cookies object:

app.use(express.cookieParser());

app.get('/', function(req, res){
 // use req.cookies.rememberme
});

res.clearCookie(name)

Clear cookie name by setting “expires” far in the past.

res.clearCookie('rememberme');

res.render(view[, options[, fn]])

Render view with the given options and optional callback fn.
When a callback function is given a response will not be made
automatically, however otherwise a response of 200 and text/html is given.

The options passed are the local variables as well, for example if we want to expose “user” to the view, and prevent a local we do so within the same object:

var user = { name: 'tj' };
res.render('index', { layout: false, user: user });

res.partial(view[, options])

Render view partial with the given options. This method is always available
to the view as a local variable.

	object the object named by as or derived from the view name

	as Variable name for each collection or object value, defaults to the view name.
	as: ‘something’ will add the something local variable

	as: this will use the collection value as the template context

	as: global will merge the collection value’s properties with locals

	collection Array of objects, the name is derived from the view name itself.
For example video.html will have a object video available to it.

The following are equivalent, and the name of collection value when passed
to the partial will be movie as derived from the name.

partial('theatre/movie.jade', { collection: movies });
partial('theatre/movie.jade', movies);
partial('movie.jade', { collection: movies });
partial('movie.jade', movies);
partial('movie', movies);
// In view: movie.director

To change the local from movie to video we can use the “as” option:

partial('movie', { collection: movies, as: 'video' });
// In view: video.director

Also we can make our movie the value of this within our view so that instead
of movie.director we could use this.director.

partial('movie', { collection: movies, as: this });
// In view: this.director

Another alternative is to “explode” the properties of the collection item into
pseudo globals (local variables) by using as: global, which again is syntactic sugar:

partial('movie', { collection: movies, as: global });
// In view: director

This same logic applies to a single partial object usage:

partial('movie', { object: movie, as: this });
// In view: this.director

partial('movie', { object: movie, as: global });
// In view: director

partial('movie', { object: movie, as: 'video' });
// In view: video.director

partial('movie', { object: movie });
// In view: movie.director

When a non-collection (does not have .length) is passed as the second argument, it is assumed to be the object, after which the object’s local variable name is derived from the view name:

partial('movie', movie);
// => In view: movie.director

This exact API can be utilized from within a route, to respond with a fragment via Ajax or WebSockets, for example we can render a collection of users directly from a route:

app.get('/users', function(req, res){
 if (req.xhr) {
 // respond with the each user in the collection
 // passed to the "user" view
 res.partial('user', users);
 } else {
 // respond with layout, and users page
 // which internally does partial('user', users)
 // along with other UI
 res.render('users', { users: users });
 }
});

res.local(name[, val])

Get or set the given local variable name. The locals built up for a response are applied to those given to the view rendering methods such as res.render().

 app.all('/movie/:id', function(req, res, next){
 Movie.get(req.params.id, function(err, movie){
 // Assigns res.locals.movie = movie
 res.local('movie', movie);
 });
 });

 app.get('/movie/:id', function(req, res){
 // movie is already a local, however we
 // can pass more if we wish
 res.render('movie', { displayReviews: true });
 });

app.set(name[, val])

Apply an application level setting name to val, or
get the value of name when val is not present:

app.set('views', __dirname + '/views');
app.set('views');
// => ...path...

Alternatively you may simply access the settings via app.settings:

app.settings.views
// => ...path...

app.enable(name)

Enable the given setting name:

app.enable('some arbitrary setting');
app.set('some arbitrary setting');
// => true

app.enabled('some arbitrary setting');
// => true

app.enabled(name)

Check if setting name is enabled:

app.enabled('view cache');
// => false

app.enable('view cache');
app.enabled('view cache');
// => true

app.disable(name)

Disable the given setting name:

app.disable('some setting');
app.set('some setting');
// => false

app.disabled('some setting');
// => false

app.disabled(name)

Check if setting name is disabled:

app.enable('view cache');

app.disabled('view cache');
// => false

app.disable('view cache');
app.disabled('view cache');
// => true

app.configure(env|function[, function])

Define a callback function for the given env (or all environments) with callback function:

app.configure(function(){
 // executed for each env
});

app.configure('development', function(){
 // executed for 'development' only
});

app.redirect(name, val)

For use with res.redirect() we can map redirects at the application level as shown below:

app.redirect('google', 'http://google.com');

Now in a route we may call:

res.redirect(‘google’);

We may also map dynamic redirects:

app.redirect('comments', function(req, res){
 return '/post/' + req.params.id + '/comments';
});

So now we may do the following, and the redirect will dynamically adjust to
the context of the request. If we called this route with GET /post/12 our
redirect Location would be /post/12/comments.

app.get('/post/:id', function(req, res){
 res.redirect('comments');
});

When mounted, res.redirect() will respect the mount-point. For example if a blog app is mounted at /blog, the following will redirect to /blog/posts:

res.redirect('/posts');

app.error(function)

Adds an error handler function which will receive the exception as the first parameter as shown below.
Note that we may set several error handlers by making several calls to this method, however the handler
should call next(err) if it does not wish to deal with the exception:

app.error(function(err, req, res, next){
 res.send(err.message, 500);
});

app.helpers(obj)

Registers static view helpers.

app.helpers({
name: function(first, last){ return first + ‘, ‘ + last }
, firstName: ‘tj’
, lastName: ‘holowaychuk’
});

Our view could now utilize the firstName and lastName variables,
as well as the name() function exposed.

<%= name(firstName, lastName) %>

app.dynamicHelpers(obj)

Registers dynamic view helpers. Dynamic view helpers
are simply functions which accept req, res, and are
evaluated against the Server instance before a view is rendered. The return value of this function
becomes the local variable it is associated with.

app.dynamicHelpers({
 session: function(req, res){
 return req.session;
 }
});

All views would now have session available so that session data can be accessed via session.name etc:

<%= session.name %>

app.mounted(fn)

Assign a callback fn which is called when this Server is passed to Server#use().

var app = express.createServer(),
 blog = express.createServer();

blog.mounted(function(parent){
 // parent is app
 // "this" is blog
});

app.use(blog);

app.register(ext, exports)

Register the given template engine exports
as ext. For example we may wish to map ”.html”
files to jade:

 app.register('.html', require('jade'));

This is also useful for libraries that may not
match extensions correctly. For example my haml.js
library is installed from npm as “hamljs” so instead
of layout.hamljs, we can register the engine as ”.haml”:

 app.register('.haml', require('haml-js'));

For engines that do not comply with the Express
specification, we can also wrap their api this way. Below
we map .md to render markdown files, rendering the html once
since it will not change on subsequent calls, and support local substitution
in the form of “{name}”.

 app.register('.md', {
 compile: function(str, options){
 var html = md.toHTML(str);
 return function(locals){
 return html.replace(/\{([^}]+)\}/g, function(_, name){
 return locals[name];
 });
 };
 }
 });

app.listen([port[, host]])

Bind the app server to the given port, which defaults to 3000. When host is omitted all
connections will be accepted via INADDR_ANY.

app.listen();
app.listen(3000);
app.listen(3000, 'n.n.n.n');

The port argument may also be a string representing the path to a unix domain socket:

app.listen('/tmp/express.sock');

Then try it out:

$ telnet /tmp/express.sock
GET / HTTP/1.1

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 11

Hello World

 Introduction

Introduction

This introduction screencast covers the basics of Express, and how to get started with your first application.

View Partials

In this screencast we work with partials to display a collection of users using the Jade [http://jade-lang.com] template engine, and learn about view path resolution.

Route Specific Middleware

In the screencast below we learn about the benefits of route-specific middleware.

Route Placeholder Preconditions

Learn about route placeholder (/user/:id) pre-conditions, allowing validation, and loading of data via the named route placeholder segments.

 Express 1.x to 2.x Migration

Express 1.x to 2.x Migration

HTTPS

Creating an HTTPS server is simply, simply pass the TLS options to express.createServer():

 var app = express.createServer({
 key: ...
 , cert: ...
 });

 app.listen(443);

req.header() Referrer

Previously if anyone was doing something similar to:

 req.headers.referrer || req.headers.referer
 req.header('Referrer') || req.header('Referer')

With the new special-case we may now simply use Referrer which will return either if defined:

 req.header('Referrer')

res.local(name, val)

Previously all local variables had to be passed to res.render(), or either app.helpers() or app.dynamicHelpers(), now we may do this at the request-level progressively. The res.local() method accepts a name and val, however the locals passed to res.render() will take precedence.

For example we may utilize this feature to create locals in middleware:

 function loadUser(req, res, next) {
 User.get(req.params.id, function(err, user){
 res.local('user', user);
 next();
 });
 }

 app.get('/user/:id', loadUser, function(req, res){
 res.render('user');
 });

req.param(name[, defaultValue])

Previously only name was accepted, so some of you may have been doing the following:

 var id = req.param('id') || req.user.id;

The new defaultValue argument can handle this nicely:

 var id = req.param('id', req.user.id);

app.helpers() / app.locals()

app.locals() is now an alias of app.helpers(), as helpers makes more sense for functions.

req.accepts(type)

req.accepts() now accepts extensions:

 // Accept: text/html
 req.accepts('html');
 req.accepts('.html');
 // => true

 // Accept: text/*; application/json
 req.accepts('html');
 req.accepts('text/*');
 req.accepts('text/plain');
 req.accepts('application/json');
 // => true

 req.accepts('image/png');
 req.accepts('png');
 // => false

res.cookie()

Previously only directly values could be passed, so for example:

res.cookie('rememberme', 'yes', { expires: new Date(Date.now() + 900000) });

However now we have the alternative maxAge property which may be used to set expires relative to Date.now() in milliseconds, so our example above can now become:

res.cookie('rememberme', 'yes', { maxAge: 900000 });

res.download() / res.sendfile()

Both of these methods now utilize Connect’s static file server behind the scenes (actually the previous Express code was ported to Connect 1.0). With this change comes a change to the callback as well. Previously the path and stream were passed, however now only an error is passed, when no error has occurred the callback will be invoked indicating that the file transfer is complete. The callback remains optional:

 res.download('/path/to/file');

 res.download('/path/to/file', function(err){
 if (err) {
 console.error(err);
 } else {
 console.log('transferred');
 }
 });

The stream threshold setting was removed.

res.render()

Previously locals were passed as a separate key:

 res.render('user', { layout: false, locals: { user: user }});

In Express 2.0 both the locals and the options are one in the same, meaning you cannot have a local variable named layout as it is reserved for express, however this cleans up the API:

 res.render('user', { layout: false, user: user });

res.partial()

Express 2.0 adds the res.partial() method, helpful for rendering partial fragments over WebSockets or Ajax requests etc. The API is identical to the partial() calls within views.

 // render a collection of comments
 res.partial('comment', [comment1, comment2]);

 // render a single comment
 res.partial('comment', comment);

Template Engine Compliance

To comply with Express previously engines needed the following signature:

 engine.render(str, options, function(err){});

Now they must export a compile() function, returning a function which when called with local variables will render the template. This allows Express to cache the compiled function in memory during production.

 var fn = engine.compile(str, options);
 fn(locals);

View Partial Lookup

Previously partials were loaded relative to the now removed view partials directory setting, or by default views/partials, now they are relative to the view calling them, read more on view lookup.

Mime Types

Express and Connect now utilize the mime module in npm, so to add more use:

 require('mime').define({ 'foo/bar': ['foo', 'bar'] });

 <no title>

Learnboost [http://learnboost.com] is a free online gradebook application, aimed to crush the competition with innovative, realtime, enjoyable features.

[image: LearnBoost] [http://learnboost.com]

Storify [http://storify.com] lets you turn what people post on social media websites into compelling stories.

[image: Storify] [http://storify.com]

Pakistan Survey [http://pakistansurvey.org/] by Development Seed [http://developmentseed.org], provides in-depth agency-specific analysis from regional experts with data from 1,000 interviews across 120 villages in all seven tribal agencies and mapping of 142 reported drone strikes in FATA through July 2010.

[image: Pakistan Survey] [http://pakistansurvey.org]

Markup.IO [http://markup.io] allows you to draw directly on any website, then share with others to share your thoughts.

[image: Markup.IO] [http://markup.io]

Scrabb.ly [http://scrabb.ly] is a massively multiplayer scrabble game initially created for the Node Knockout [http://nodeknockout.com/] competition.

[image: Online Realtime Scrabble] [http://scrabb.ly]

ClickDummy [http://clickdummy.net/] is a rapid mockup prototyping application for designers and dummies.

[image: Mockup Prototying] [http://clickdummy.net]

Node Knockout [http://nodeknockout.com] organized the first ever node-specific competition with hundreds of contestants.

[image: Node Knockout Competition Express] [http://nodeknockout.com]

Widescript [http://widescript.com] is an innovative app that helps you focus and interact with your texts - on your desktop, your couch or on the go.

[image: Widescript] [http://widescript.com]

e-resistable [http://www.e-resistible.co.uk/] is an online order takeaway system providing an intuitive way to fill your belly from your computer!

[image: Online Takeaway] [http://www.e-resistible.co.uk]

Top Twitter Trends [http://toptwittertrends.com] utilizes MongoDB, Socket.IO, jQuery and many other exciting libraries to bring you trending tweets in realtime.

[image: Twitter Trends] [http://toptwittertrends.com]

The applications shown above are not listed in any specific order. To have an application added or removed please contact TJ Holowaychuk [http://github.com/visionmedia].

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_images/scrabbly.png

_images/e-resistable.png
Order Takeaway Online

Enter your postcode or town: M

4 Popular Dishes _ Customer Reviews

@85 Best Offers

_images/nodeko.png
nodejs £0¥

Joyent
(5] heroku
et s b s S st o github
palm
& sencha
Medium
oasis dig

Bladderblock #envato
Bl . BarE

ot b= REYNSRE®

A CouchDB

_images/developmentseed.png
Ischinsio

_images/widescript.png
Widescript

g made
useful. Everywhere.

E ‘o0 focus s nerct with Y et — 00

Sourdeskiop, your couch or o he .

Forstudets s Fr6cdom of reading

Interested?

Frtge o

‘Study better, solo or teamwork

_images/storify.png
Storify p—

- Create stories
using social med